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Earthquakes pose significant risks to dam safety and jeopardize lives. Current damage assessment methods lack a
standardized scale for classifying seismic damage to embankment dams, and the Modified Mercalli Intensity
(MMI) scale falls short in addressing the complexities of dam damage. This study introduces: (1) a novel Dam
Damage Intensity (DDI) scale, specifically designed to quantify earthquake-induced damage to embankment
dams, and (2) novel empirical DDI predictive models that integrate seismic parameters: magnitude (M) and
hypocentral distance (Rnyp) with dam characteristics: height (Hp), age (Ap), and dam type (DT). The DDI scale
classifies damage into five levels, from minor (1) to complete failure (5). Based on the analysed dataset of 109
dams affected by 16 earthquakes, potential seismic damage is associated with My, > 6.0 and Ryyp < 250 km. Four
functional forms of DDI predictive models were evaluated: two based on modified Intensity Prediction Equations
(IPE) (Models 3 & 4), one from modified Ground Motion Prediction Equations (Model 2), and one from a
modified dam crest settlement model (Model 1). IPE models consistently outperformed the others, achieving the
highest R? (~0.62), lowest errors (MSE = 0.79, RMSE = 0.89, MAE = 0.75), and minimal log-likelihood value
(1.300-1.302), and exhibited consistent predictive performance under repeated out-of-sample validation.
Sensitivity analysis revealed that Rpy, and Hp are the most influential seismic and dam parameters respectively,
contributing to DDI predictions. DDI scale and predictive models offer a reliable tool for preliminary damage
assessment for embankment dams in earthquake-prone regions.

1. Introduction

Embankment dams represent the predominant form of dam con-
structed globally, comprising approximately 70 % of all existing dams
[1,2]. These vital infrastructures fulfill a diverse array of functions,
including flood mitigation, irrigation, water resource management, and
hydroelectric power generation [3]. Typically constructed from natural
materials such as soil, rock, and clay, the common types of embankment
dams include earthfill, homogeneous earth, and rockfill dams [4].
However, the integrity of these structures can be severely challenged by
seismic events, which may lead to catastrophic failures and pose sig-
nificant risks to human safety and property [5]. Understanding the
impact of seismic activity on embankment dams is, therefore, crucial for
safeguarding these essential infrastructures.

Historical incidents highlight the vulnerability of embankment dams
to earthquakes [6-10]. The Lower San Fernando Dam in California
nearly collapsed during the 1971 earthquake, leading to improved
design practices for earthquake resistance [11]. The 2011 Tohoku

* Corresponding author.
E-mail address: anbazhagan@iisc.ac.in (P. Anbazhagan).

https://doi.org/10.1016/j.s0ildyn.2025.110079

earthquake in Japan raised concerns about the stability of these dams,
calling for thorough assessments of their seismic resilience [12]. Most
recently, the M,y 7.8 earthquake in Turkey on February 6, 2023,
impacted over 100 dams, showing varying damage levels [13]. These
events have spurred ongoing research into the seismic vulnerabilities of
embankment dams to enhance future design and safety measures.

Assessing damage from seismic events in embankment dams presents
several challenges that current damage assessment methods struggle to
address. Established scales, such as the Modified Mercalli Intensity
(MMI) scale, provide a qualitative assessment of earthquake intensity on
a scale from I (not felt) to XII (complete destruction), heavily relying on
personal observations from those who experienced the tremor [14].
Similarly, the European Macroseismic Scale (EMS) offers criteria for
evaluating earthquake effects on buildings [15]. The damage ratio
method further contributes to the analysis by comparing repair costs to
the pre-earthquake value of the building, serving an important role in
insurance and economic evaluations [16].

Despite enhancements made to the MMI scale by studies such as
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Dowrick [17], it remains inadequate for evaluating damages to critical
infrastructure, including embankment dams, due to its subjective nature
and limitations at high-intensity levels. Anbazhagan et al. [18] high-
lighted these shortcomings in assessing road damage from earthquakes
and proposed a new damage scale to quantify such impacts. A significant
limitation of the MMI when assessing damage to embankment dams is its
failure to account for critical factors such as dam type and design, which
are essential for an accurate evaluation of seismic responses. Addition-
ally, the MMI's reliance on surface observations often overlooks internal
damage or structural failures that may occur within these structures. As
the need for comprehensive assessment methods intensifies in the wake
of increasing seismic activity, addressing these gaps is crucial for
enhancing the resilience and safety of embankment dams.

Furthermore, studies have proposed damage classification method-
ologies and scales for structures such as reinforced concrete, bridges,
and masonry buildings [19-21]. These methodologies enable effective
evaluation of performance during earthquakes [22-25]. Current
guidelines and frameworks provide practitioners with the necessary
tools to assess the seismic damage classifications and damage scaling of
these structures [22,26]. However, there is a significant gap in the study
on comparable damage classification systems and damage scales for
embankment dams, which are also vulnerable to seismic risks. The lack
of dedicated damage classification methodologies and damage scales for
embankment dams highlights the need for further research to create an
effective damage scale that addresses their unique vulnerabilities and
performance characteristics during seismic events [22,27,28]. Devel-
oping such a scale would enhance our understanding of the seismic risks
of embankment dams, ultimately contributing to improved safety and
resilience in earthquake-prone regions.

This paper introduces a novel seismic damage scale called the
seismic Dam Damage Intensity (DDI) scale. DDI is developed to address
the limitations of existing seismic damage assessment scales, such as the
MMI. DDI is designed specifically to quantify earthquake-related dam-
age to dams using historical earthquake records, offering a more effec-
tive framework for qualitatively evaluating their structural integrity
under seismic activity. MMI and the DDI are plotted against earthquake
parameters, i.e., magnitude and hypocentral distance, to determine
which damage intensity scale correlates best with these parameters.
Additionally, we propose empirical DDI predictive models designed to
predict damage induced due to earthquakes in embankment dams.
These models integrate earthquake-related parameters, i.e., Magnitude
(M) and Hypocentral Distance (Rpyp), alongside dam-specific charac-
teristics such as Height (Hp), Age (Ap), and Dam Type (DT), and give the
DDI predictions. We evaluate four functional forms for the predictive
models: two based on modified Intensity Prediction Equations (IPE), one
derived from modified Ground Motion Prediction Equations (GMPE),
and another based on a modified dam crest settlement model. An
analysis of the contributions of each predictor variable to DDI pre-
dictions is performed to identify key factors influencing DDI outcomes.
By introducing the DDI scale and DDI predictive models, this study aims
to improve the accuracy of seismic damage assessments and advance the
overall understanding of seismic risk management for embankment
dams. The novel contributions of this work are: 1) Development of the
Dam Damage Intensity (DDI) scale to classify the seismic damages in
embankment dams; 2) Development of empirical DDI predictive models
using seismic and dam parameters; 3) Evaluation of the contribution of
predictor variables in the DDI predictions.

2. Seismically damaged dam dataset

We compiled a dataset of embankment dams that sustained damage
during past earthquakes from a wide range of literature sources and
historical records. Although numerous earthquakes have been reported
to cause structural damage to dams, detailed documentation, particu-
larly in the form of photographs and comprehensive descriptions, re-
mains limited. This lack of systematic reporting poses challenges for
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researchers and engineers seeking to assess dam performance under
seismic loading.

The dataset incorporates both earthquake-related and dam-specific
parameters. Earthquake characteristics include moment magnitude
(M), epicentral distance (Rep;), and focal depth (Dg). Wherever avail-
able, MMI values at the dam sites were also collected. Dam parameters
include height of dam (Hp) and age of dam (Ap). Damage descriptions
were verified against photographic evidence when possible to ensure
consistency and reliability. In total, the dataset covers 16 earthquake
events, yielding 109 documented cases of damage to earthen dams.
Table 1 summarises the earthquake events considered in this study and
forms the basis for the development of the proposed damage intensity
scale and predictive model. A detailed account of individual earthquakes
and associated dam damage is provided in the supplementary dataset
(Table S;). Fig. 1 shows the global distribution of earthquake events
included in the compiled dataset. These damaging events occur across
several major seismically active regions, China, Japan, Turkey, the
United States, India, and the Philippines, demonstrating that the dataset
is not confined to a single geographic or tectonic context. For each re-
gion, the number of affected dams and corresponding earthquake
magnitudes are summarised, illustrating the range of seismic loading
conditions represented. The documented events span magnitudes of My,
6.7-8.0, hypocentral distances (Rpyp) of 15-234 km, and focal depths of
6-62.9 km. Although earthquake-induced dam-damage cases remain
globally sparse, the dataset incorporates observations from multiple
continents, diverse tectonic regimes, and different dam portfolios.
Because MMI values were not available for every site, they are reported
for 78 dam locations only, as indicated in Table S; (Supplementary
dataset).

3. Seismic Dam Damage Intensity Scale

Historical documentation of earthquake-induced dam damage is
predominantly qualitative, relying on narrative descriptions, photo-
graphic evidence, and non-standardised engineering notes. The dataset
compiled for this study includes 109 such cases, encompassing cracking,
leakage, deformation, settlement, slope movement, and operational
disturbances. This heterogeneity, combined with the fundamentally
different seismic response of dams compared with buildings or lifelines,
necessitates a dedicated, standardised approach for translating
descriptive observations into a consistent classification system. Existing
macroseismic intensity scales, such as the Modified Mercalli Intensity
(MMI), are insufficient for this purpose: they describe general shaking
effects at the community scale and provide only coarse references to
dams at very high intensity levels (e.g. “damage serious to dams, dikes,
embankments” at MMI X and “great damage to dams” at MMI XI) [14].
Such general intensity scales are not tailored to structures like dams,
tunnels, and roads and lack the structural resolution needed for engi-
neering analyses [18,35,36].

The Dam Damage Intensity (DDI) scale is introduced to address these
limitations. DDI is a structured, dam-specific framework designed to
enable reproducible classification of seismic damage. The need for DDI
arises directly from the qualitative nature of historical damage records
and the lack of dam-focused criteria in general intensity scales. The DDI
scale establishes explicit, rule-based physical criteria for assigning
damage levels, thereby minimising subjective interpretation. These
criteria include quantitative ranges for crack width and depth, classifi-
cations of leakage severity, thresholds for measured deformation or
displacement (e.g., crest settlement or lateral movement), observable
indicators of slope instability, and post-earthquake operability or repair
requirements. Each indicator is defined through clear numerical or
categorical thresholds derived from documented dam case histories [31,
37] and international best-practice guidance for empirical damage
assessment [38]. Because the criteria are explicitly specified, consistent
application of the rules ensures that independent evaluators would
assign the same DDI level for the same set of observations, thereby



P. Anbazhagan and S. Prakash

Soil Dynamics and Earthquake Engineering 203 (2026) 110079

Table 1
List of earthquake events used for the scale development.
Earthquake Name Date Epicentre My Depth (km) Number of Dams References
Lat(°N) Long(°E)
Nigata Earthquake June 16, 1964 37.8 139 7.6 10 1 [29]
Santa Barbara Earthquake June 29, 1925 34.3 -119.8 6.8 10 1 [29]
Imperial Valley Earthquake June 22, 1915 32.75 -115.3 6.9 6 1 [30]
Hebgen Lake Earthquake August 18, 1959 44.863 —-111.335 7.2 25 1 [30]
Tokai-oki Earthquake May 16, 1968 40.9 143.35 7.9 26 1 [29]
Hokkaidou Nanseioki Earthquake July 2, 1973 43.233 145.785 7.8 48 1 [29]
Miyagi-Oki Earthquake June 12, 1978 38.15 142.2167 7.4 30 2 [29]
Nihonkai-Chubu Earthquake May 26, 1983 40.4 138.91 7.9 24 3 [29]
Chiba-Touhouoki Earthquake December 17, 1987 35.372 140.519 6.7 62.9 1 [29]
Philippines Earthquake July 16, 1990 15.7 121.1167 7.7 25.1 1 [29]
Northridge Earthquake January 17, 1994 34.213 —118.537 6.7 18.2 1 [31]
Kobe Earthquake January 16, 1995 34.6 135 6.9 22 1 [29]
Bhuj Earthquake January 26, 2001 23.4 70.28 7.7 25 4 [32]
Wenchuan Great Earthquake May 12, 2008 30.989 103.329 8 19 66 [33]
Pazarcik Earthquake February 6, 2023 37.288 37.043 7.7 8.6 9 [34]
Elbistan Earthquake February 6, 2023 38.089 37.239 7.6 7 11 [34]
Abbreviations: Lat: Latitude, Long: Longitude, M,,: Moment Magnitude.
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Fig. 1. Map illustrating the location of the epicentre of earthquakes considered in DDI scale development.

improving reproducibility and reducing ambiguity in empirical damage
classification.

DDI levels are assigned directly from observed damage descriptors
and are not derived from MMI or any other seismic parameter. Conse-
quently, historical damage records were not reclassified from MMI to
DDI, and MMI values are reported solely for contextual comparison. This
direct assignment from observed damage ensures that subsequent ana-
lyses, such as correlation or regression using DDI, remain free from
circular reasoning. The DDI scale defines five levels of damage severity
(I-V), capturing the full spectrum of seismic effects relevant to
embankment dams. Primary seismic effects include deformation, set-
tlement, tilting, longitudinal cracking, leakage, and sliding, while sec-
ondary effects, such as liquefaction and earthquake-induced landslides,
are also incorporated. These mechanisms represent well-documented
precursors to functional impairment and, at higher levels, structural
failure. Table 2 summarises the detailed criteria associated with each
DDI level, ranging from minor, non-structural impacts at Level I to

complete structural destruction at Level V. Representative photographic
evidence illustrating these levels is provided in Fig. 2. By relying on
measurable indicators and focusing on observable structural behaviour,
the DDI scale establishes a transparent, reproducible, and engineering-
relevant framework for evaluating seismic damage to embankment
dams. This contributes to a more rigorous understanding of dam
vulnerability and performance under earthquake loading.

4. Classification of damaged dams

In this section, we compile observed cases of seismic dam damage
documented in historical records. Concurrently, earthquake parameters
and dam characteristics, including DT, Hp, and Ap, were extracted from
these sources. Reported MMI intensity at the dam site was also extracted
from these sources for contextual comparison with DDI. A comprehen-
sive analysis of all recorded instances of dam damage was conducted,
leading to the systematic reclassification of the dams according to the
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Table 2
Proposed Dam Intensity Scale to define seismic damage of Embankment Dams.
DDI Damage Post-Earthquake Typical Historical =~ Reported
Level  Description Functional Context” MMI in
Condition Historical
Records”

1 Slight Damage: Fully Often observed in  XI, VII,
Damage is operational; relatively modern  VIII, VI
limited to minor only minor dams located at
superficial cracks cosmetic repairs larger epicentral
(width <1 c¢m, needed. distances, where
depth <1 m) with shaking levels
no leakage, were light to
subsidence, or moderate.
structural
damage to
auxiliary
facilities.

2 Minor Damage: Operational; Reported in dams VI, VII,
Minor cracks minor repairs constructed inthe  VIII
along the crest required to mid-20th
(width <5 cm, restore initial century, located
depth 1-2 m), condition. at moderate
slight leakage, distances from
and no signs of the epicentre and
subsidence or subjected to
slope failure are moderate
observed. shaking.

3 Medium Damage: Operation Typically VIIL IX, X,
Small to medium restricted; observed in VI
cracks (5-10 cm substantial embankment
wide, 2-3 m repairs required dams constructed
deep), slight to before resuming before the
medium leakage, normal use. adoption of
and signs of modern seismic
subsidence design practices,
without major located at
slope failure. moderate to
Possible damage relatively short
to auxiliary distances from
facilities. the epicentre,

where shaking
was strong.

4 Serious Damage: Dam crest Frequently X, XI, VII,
Large cracks generally closed associated with VI, VIII
(width >10 cm, to vehicle access; dams constructed
depth >3 m), major structural without formal
significant repairs required.  seismic design
leakage, signs of provisions,
landslides or located near the
tilting, and epicentre and
localized exposed to very
displacement. strong shaking.

Dams are
severely
damaged but not
failed and require
immediate
partial seismic
retrofitting.

5 Severe damage or  Full closure Observed indams X, VII, VIII,
failure: Signs required; lacking seismic VI
include major emergency design
displacements, response and considerations,
tilting, major typically located
significant cracks  reconstruction. close to the
(depth >5m, epicentre, where
width >15 cm), shaking intensity
and severe was extreme.
leakage.

Complete
collapse and
liquefaction.

 Historical context and historical MMI values are provided only for descrip-
tive purposes and were not used in assigning DDI levels.
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newly proposed DDI scale, as summarised in the supplementary dataset
(Table S;). In the classification process, damaged embankment dams
have been categorized into three principal types: homogeneous earth
dams (HED), rockfill dams (RFD), and earth-fill or earth-cored dams
(CED), based on their materials and construction method. The dataset
was carefully refined to ensure that each dam type incorporates critical
earthquake parameters (M, Repj, and Df) along with relevant dam
characteristics (Hp, Ap) necessary for developing a functional DDI pre-
dictive model. In Fig. 3, the dataset for embankment dams is summar-
ised, along with the new DDI scale classifications. The finalized dataset,
which will serve as the foundation for developing predictive models for
DDJ, is presented in the supplementary dataset (Table S;).

Fig. 4 presents histograms illustrating the frequency distributions of
key variables in the dataset, summarising the main predictors and
response used in the analysis. Earthquake parameters (My, and Rpyp)
span a wide range of shaking intensities, with M, mostly between 6.5
and 8 and Ryyp from 15 m up to 234 km. In the dam-related variables,
heights range from 5 m to 105 m, with most cases below 40 m, and ages
vary from newly constructed to over 120 years. Categorical variables
include three dam types (HED, CED, RFD), while DDI values cover all
defined damage levels (DDI1-DDI5), with lower levels being more
frequent. It is important to note that MMI values are not uniformly
documented for all individual dams or their specific geographic loca-
tions. In many cases, multiple MMI values correspond to a single DDI
value, as shown in Table 2, which aligns with the definitions of the new
DDI scale. Fig. 5a—d illustrate the relationships of MMI and DDI with key
earthquake parameters across all embankment dam types, offering
qualitative insight into their observed behaviour. Specifically, Fig. 5a
shows that MMI data are incomplete for certain magnitudes, and no
discernible trend with earthquake magnitude (M) is apparent. In
contrast, Fig. 5b demonstrates that DDI values are available across all
magnitudes, revealing a significant and consistent trend when appro-
priately grouped. Similarly, Fig. 5c¢ highlights the limited availability of
MMI data across a broad range of Ryy,, with no clear trend observed. By
comparison, Fig. 5d shows that DDI values cover a wide range of Ryyp,
exhibiting a distinct and consistent trend. These observations are
consistent with the findings of [18], which reported no clear trend of
MMI with either My, or Rpy, when classifying seismic road damage,
further supporting the limited applicability of MMI for dam-specific
seismic assessments.

The consistent trends observed for DDI with seismic parameters in
Fig. 5b and Fig. 5d reflect the scale's intrinsic design. Because DDI is
defined exclusively from observable structural damage descriptors such
as crack width and depth, seepage severity, slope deformation, crest
settlement, and operational impairment, it represents a dam-specific
engineering damage state rather than a shaking-intensity metric. DDI
is therefore expected to exhibit stronger statistical links to seismic
loading than a generic intensity measure (e.g. MMI) not tailored to
dams. By contrast, MMI is a community-based shaking intensity scale
describing general effects on people and buildings, with only limited
reference to dam damage at very high intensities (MMI X) [14]. A
stronger statistical association between DDI and seismic parameters is
therefore expected and does not arise from circularity or reclassification
bias. Nevertheless, all observed trends are constrained by the sparse and
heterogeneous nature of historical damage documentation, which in-
troduces inherent epistemic uncertainty [38].

Analysis of the dataset indicates that the minimum earthquake
magnitude associated with observed dam damage is My, 6.5, while the
maximum hypocentral distance is 250 km. This observed lower bound of
M,, 6.5 should not be interpreted as a universal threshold, but rather
reflects the characteristics and completeness of the compiled historical
dataset. Based on these observations, we also recommend an M,, of 6.0
and a maximum Ry, of 250 km from the dam site to the epicentre
during an earthquake event in which seismic damage to the dam may
occur. It should be noted that dam damage may also result from sec-
ondary effects such as tsunamis, seiches, or cascading failures of
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. Differentially displaced blocks at the
upstream toe of Fategadha dam [32].

. Slumping and bulging in the shell
material of the Fategadha dam near
the upstream toe [32]. b

. Disturbance of riprap at Bhukhi Dam

[32].

Collapsed parapet wall in Deng-ta

reservoir dam [32] .
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. Longitudinal cracks along with
the crown of Tapar Dam to a
depth of 3m [32].

. Longitudinal cracks on the crest
of Kalaghogha dam [32].

. Open, longitudinal cracks along
the crest of the Sasoi earth dam
[32].

. Damage of opening and closing
facilities of Bo-lin reservoir dam
[33].
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DDILEVEL 3

. Damage to the electric duct
downstream at the Calcolbone
Crown Dam [7].

. Tension cracks on the Cogoti
Dam crest after the 1997
earthquake [8].

. Longitudinal cracking on the
upstream side of the crest of
Melado Dam [9].

. Damage near the left abutment
scarp at the dam crest and bulge
in the lower right of the photo of
Coihueco Dam [10].
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D
DDILEVEL 4

. Damage to Niroku's upstream
slope [6].

. Concrete wall destruction at
the Fategadha spillway, with
transverse cracks and
differential vertical
displacement [32].

. Sand blows and cold-water
springs due to soil
liquefaction from the Bhuj
earthquake near Lodai [32].

. 10 cm embankment settlement
at the spillway of Aratozawa
Dam [29].
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. Idenoshiri Dam damage
from liquefaction [6].

. Sand boils in the
Idenoshiri Dam reservoir
[6].

. Spillway damage at
Makumoto Dam [6].

. Perpendicular lateral
cracks and sand boils at
the crest of Koujin Dam

[6].
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Fig. 2. Representative photographs illustrating common failures for each DDI Level.
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=

Fig. 3. Number of dams corresponding to each DDI and the dam types (ho-
mogeneous earth dams (HED), rockfill dams (RFD), and earth-fill or earth-cored
dams (CED)).

upstream dams. Although specific reports of such events were not
included in our dataset, comprehensive risk assessments should account
for these factors. Consequently, dams located near the sea, downstream
of other dams, or adjacent to unstable upstream slopes may require
consideration of larger distances for accurate seismic risk evaluation.

Overall, analysis of Fig. 5a-d demonstrates that the proposed DDI
scale exhibits a strong correlation with earthquake parameters, con-
firming its robustness and suitability for seismic risk assessment of
embankment dams and at the same time it should be noted that all
comparisons between DDI and MMI are based on historical damage re-
ports and remain subject to substantial epistemic uncertainty due to
sparse and heterogeneous data [38]. Global records of
earthquake-induced embankment dam damage are limited, often con-
taining only a few dozen well-documented cases, with many events
reporting minimal or no damage [31]. Consequently, the dataset is
small, geographically uneven, and dominated by narrative descriptions,
which may introduce sampling bias and limit generalisability.

5. DDI predictive parameters and model

Seismic damage to earth dams is influenced by multiple factors,
including earthquake, site subsurface and dam parameters. Seismic pa-
rameters of source, path, and energy released are represented by
earthquake size, distance, and source type. Site parameters from the
base of the dam to non-amplifying layers can be represented by the
average shear wave velocity. Dam parameters include age of dam (Ap),
height of dam (Hp), dam type (DT) and stiffness of foundation and dam.
Among these parameters, the dam damage reports consist of earthquake
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moment magnitude (My,) and hypocentral distance (Rpyp) arrived from
the shortest epicentral distance (Rep;) and depth of earthquake and dam
parameters, including age of dam (Ap), height of dam (Hp) and dam type
(DT) are found along with damage description and damage images.
Hence, in this study, we considered a total of five predictor variables
obtainable from old damage reports to develop the DDI predictive
model. The predictive model integrates seismic parameters and dam-
specific features to comprehensively assess factors influencing DDI.
The ageing process influences material properties, soil compaction,
and overall structural stability [39]. Older dams are generally more

susceptible to seismic loading due to factors such as soil degradation,
increased pore pressures, and heightened liquefaction potential [40]. In
embankment dams, long-term ageing can reduce density, amplifying
accelerations and displacements, and promoting plastic deformation
within the core [41]. Material deterioration further decreases dynamic
resistance, increasing the likelihood of damage [42]. The effects of
ageing, however, vary by dam type: homogeneous dams are prone to
degradation from seepage, cracking, and cumulative damage, while
rockfill dams may experience gradual compaction and enhanced sta-
bility through creep or dynamic settlements [43]. Earth-cored dams
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exhibit intermediate behaviour, reflecting a combination of consolida-
tion and potential long-term weakening. These differences highlight the
importance of incorporating both dam type and age when predicting
DDI [44]. However, the data regarding how the material property of
dams changes with time is not available in the literature.

Stiffness in terms of seismic velocity of compressional and shear
waves can represent these characteristics very well, but very limited
studies are available in this context. Furthermore, complied damaged
dam dataset considered age as the interval between the year of con-
struction and the year of the seismic event. Stiffness is somewhat rep-
resented in dam height, which accounts on seismic energy absorption
and structural resilience, with taller dams generally presenting higher
sliding and overturning risks [42-44]. Height was measured from the
crest to the lowest point of the original streambed, or, if unavailable,
from the lowest point of the downstream toe [48]. Although the critical
section height may differ from the maximum height, consistent data
were lacking; thus, the reported dam height was used. Dam type dis-
tinguishes between earthen, rockfill, and earth-cored embankment
dams, each characterized by unique material properties, construction
techniques, and seismic performance. In this study, to capture the effect
of different types of embankment dams, the variable dam type (DT) was
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Himalayan region. Given the absence of predictive models to predict
dam damage intensity, we identify suitable functional forms to develop
robust predictive equations for DDI. DDI predictive models were
formulated by adapting functional forms from previously established
Intensity Prediction Equations (IPEs) [52,53], Ground Motion Predic-
tion Equations (GMPEs) [54], and a dam crest settlement model [55].
This resulted in four candidate predictive equations for DDI, expressed
as follows:

1) Model 1 (Log-Linear Form): This model was modified from the dam
crest settlement model given by Ref. [55].

DDI =, +p,logM+p5logR+ p,logHp + fs logAp + f log DT + f3, log DT>
(@)

2) Model 2 (Nonlinear Mixed Form): This model was modified from a
generalized GMPE form as discussed by Ref. [54].

DDI = f5; + f,M + M+ + 5 log(R + g &™) +pR + By Hp + f10Ap + f1, DTy + 1,DT» 2)

incorporated into the regression models.

Detailed geotechnical and seismic variables, such as ground-motion
frequency content or foundation stiffness, were not incorporated in the
DDI predictive model because these data are rarely available for broad,
global dam inventories [31,49]. In their absence, we use proxies Hp, Ap,
and DT that correlate empirically with historical failure trends and
overall structural vulnerability. For example, Ap reflects the cumulative
effects of long-term consolidation, cracking, seepage evolution, and
construction-era design practices, which are widely documented in
literature [30], but no explicit material decay law is assumed. While
these proxies cannot capture all site-specific response mechanics, they
provide a practical and physically informed means of screening and
prioritising dams for further investigation. Once high-risk dams are
flagged, detailed geotechnical and seismic analyses (e.g., finite-element
modelling of the dam) can follow for those dams to refine risk estimates
[50]. To address potential overfitting, the final dataset includes only
cases for which complete information on all predictor variables was
available, ensuring consistency in the statistical analysis but limiting the
useable dataset to 109 cases. Accordingly, the predictive model was
intentionally designed around a small set of physically meaningful
variables for which data were available in the literature, reducing the
risk of spurious correlations and ensuring that the resulting model re-
mains interpretable and robust despite the modest sample size.

5.1. Prediction model functional form

The functional form of a predictive model plays a crucial role in
determining both the accuracy and reliability of regression analyses.
Initially, predictive models in seismic engineering, such as ground mo-
tion prediction models, considered only earthquake parameters. How-
ever, subsequent studies demonstrated the importance of incorporating
site-specific and structural parameters to account for local variability
and the influence of different embankment characteristics. For instance
Ref. [51], illustrated the process of selecting appropriate functional
forms for ground motion equations in regions with sparse data, using the
Himalayas as a case study. Similarly [52], highlighted that functional
forms for intensity prediction differ from those for ground motion, and
they developed an intensity predictive equation specifically for the

3) Model 3 (Linear-log Mixed Form): This model was modified from an
IPE form, as discussed by Ref. [53].

DDI = p, + M + p3 log R + B, R + s Hp + fsAp + 3,DT1 + DT,
3

4) Model 4 (Quadratic-log Mixed Form): This model was modified from
an IPE form, as discussed by Ref. [52].

DDI =y +p,M+ B3M? + B, log R+ fis R+ P Hp + ;Ap + BoDT1 + 1, DT>
C)

in these models, p; denotes regression coefficients, M represents the
moment magnitude (My), R is the hypocentral distance (Ryyp), Hp is the
dam height, Ap is the age of the dam, and DDI represents the dam
damage intensity. Ryyy, is calculated as:

Rpyp = \/Repi> + Df? (5)

where Rep; denotes the epicentral distance and Dy the focal depth. All
predictors in the four models were selected based on their physical or
engineering relevance [52-55]. Earthquake magnitude (M, M2, MP:
terms) serves as the primary driver of seismic damage, with nonlinear or
quadratic terms enabling flexible scaling of damage severity [52-55].
Hypocentral distance (R, log(R +p, €M) terms) accounts for geometric
spreading and attenuation of seismic waves along the source-to-dam
path, incorporating focal depth through Ryy, [52-55]. Hp reflects
structural inertia and hydrodynamic forces that influence dam response,
as well as stiffness is somewhat represented in Hp, accounting on seismic
energy absorption and structural resilience, with taller dams generally
presenting higher sliding and overturning risks [45-47]. Ap is used as an
empirical proxy for cumulative, time-dependent effects such as settle-
ment, cracking, and seepage changes; it does not imply a mechanistic
deterioration rate or reduction in material strength. To capture the effect
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of different types of embankment dams, the categorical variable DT was
incorporated into the regression models. Three categories were identi-
fied: homogeneous dams, rockfill dams, and earth-cored dams. The
earthen dam was designated as the baseline category, and two dummy
variables were introduced:

Homogeneous dam : (DT, DT,) = (0,0)
Rockfill dam : (DTy,DT,) = (1,0)
Earth cored dam : (DT,,DT,) = (0,1)

DT =

For the baseline (earthen dams), both dummy variables are zero,
indicating that no categorical adjustment is applied in the regression
model. These dummy variables were introduced as additive terms in the
regression equations to quantify the influence of dam type on DDI. The
intercept term (p1), therefore, represents the expected DDI for earthen
dams (baseline), while the coefficients associated with DT; and DT,
capture the mean deviations in DDI for rockfill and earth-cored dams,
respectively, relative to the baseline category. Although the indices of
these coefficients differ among models due to differences in total
parameter count, their interpretation remains consistent across all
functional forms. Specifically, they act as constant additive offsets that
modify the baseline prediction without altering the relationships be-
tween DDI and the primary explanatory variables (M, R, Hp, and Ap).
This formulation provides a physically interpretable representation of
categorical effects, treating dam-type influences as fixed offsets that
preserve the functional form of the base model. The approach is anal-
ogous to the use of source-type constants in GMPEs [56], which capture
systematic differences among crustal, interface, and intraslab events
while maintaining a shared functional structure.

Two complementary modelling strategies were employed. In the
combined analysis, all dam types were included simultaneously,
allowing the model to capture dam-type-dependent variations related to
magnitude, distance, height, and ageing. In the type-specific analysis,
separate regressions were performed for each dam type independently
(omitting DT terms). This dual strategy captures both inter-type and
intra-type variability in dam response, ensuring robust and physically
interpretable predictive relationships. Fig. 6 presents the correlation
matrix of variables used in the models. The selection of the most suitable
predictive model will be based on evaluation metrics, which are dis-
cussed in subsequent sections. This functional form framework ensures
that seismic, structural, and ageing effects are systematically captured in
the predictive modelling of dam damage intensity.

M, . 2
I ® ® b 0.75
0.5
Ryyp 0.54 1 o ° .
1025
g
Hp| -0.40 -0.18 1 O 0 =
o
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4-0.25
Ap|  0.08 -0.12 -0.34 1 o
0.5
-0.75
DDI| -0.28 -0.76 0.03 0.19 1
-1
M, Rpyp Hp Ap DDI

Fig. 6. Correlation matrix for the variables (Magnitude (M,,), Hypocentral
Distance (Rpnyp), Dam Height (Hp), Age of Dam (Ap), Dam Type (DT), Dam
Damage Intensity (DDI)) used in the analysis.
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6. Model evaluation parameters and selection criteria

DDI predictive models were systematically assessed using comple-
mentary residual-based and likelihood-based metrics. Together, these
approaches provide a comprehensive understanding of model behav-
iour, including systematic bias, dispersion of predictions, error magni-
tude, and information-theoretic fit.

6.1. Residual-based evaluation metrics

Residual-based metrics quantify the differences between observed
and predicted values, providing insight into both systematic errors and
overall prediction accuracy. The key metrics applied in this study are
summarised in Table 3.

6.2. Likelihood-based metric and model ranking

To complement conventional residual-based performance measures
with an information-theoretic perspective, the average sample log-
likelihood (LLH) was employed as a likelihood-based metric for model
evaluation and ranking. The LLH quantifies the agreement between
model-predicted and observed data distributions, assuming that the re-
siduals follow a Gaussian distribution with standard deviation (c). It is
mathematically expressed as:

18 1 <7( ‘;};)2>
LIH=--5"1 ’ 6)
n ; og \/ﬂge

where y; and y; denote the observed and predicted values, respectively,
and n is the total number of samples. This formulation represents the
negative mean log-probability of observing the data given the model and
its uncertainty structure. Lower LLH values correspond to smaller in-
formation loss when the candidate model replaces the empirical distri-
bution, and are therefore indicative of better model performance [63,
64]. LLH metric integrates both model fit and uncertainty, offering a
probabilistically consistent and sample-size-independent evaluation of
model adequacy. By framing model performance within an
information-theoretic context, LLH provides a rigorous basis for model
selection and ranking, particularly when comparing models of differing
complexity or functional form. This approach aligns with established

practices in seismological and geotechnical modelling, where
Table 3
Parameters used for the evaluation of predictive models.
Evaluation Parameters Formula References
Bias . 1 n . [57]
Bias = Zizl i = %)
- - o
Coefficient of determination I > (i — )_,1)2 [58,59]
X i-¥)
Adjusted R? ) (1-R*)(n-1) [60]
’y <1- (50)
Mean Square Error 1 n N2 [58]
MSE = H Z,‘:1 (.)/i - Yi)
Root Mean Square Error 1 2 [58]
RMSE = HZ i —v)
Mean Absolute Error 1 n . [58]
MAE = S il
Mean Absolute Percentage Error MAPE — 100 Zn yi — yi' [61]
n =y
Symmetric Mean Absolute SMAPE = [62]
Percentage Error 100 Zn |yi - 5’1"
n == (yi] + 19:)
2

Abbreviations: y: output DDI, y;: actual observed values of y, y;: predicted y
values from the model, n: number of observations, §;: mean of y, k: number of
independent variables.
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likelihood-based criteria are widely used to identify the most plausible
predictive relationships among competing formulations [63]. Accord-
ingly, models exhibiting the lowest LLH values are interpreted as sta-
tistically superior, reflecting a higher likelihood of reproducing the
observed data within the assumed uncertainty bounds.

6.3. Selection criteria and synthesis

Model selection proceeded in two stages. First, candidate models
were ranked by LLH to identify those with the least information loss.
Second, this likelihood-based ranking was cross-checked against
residual-based metrics to verify that the LLH-optimal model also
exhibited acceptable bias, low error magnitude, and consistent variance
explanation. By combining these complementary perspectives, the final
selected model was the one that minimised LLH while maintaining
favourable residual statistics, thereby offering the strongest balance of
explanatory power, predictive precision, and parsimony for subsequent
analyses.

6.4. Predictive model validation

The predictive performance of the models was evaluated using
repeated resampling-based internal validation, which is appropriate for
small to moderate sample sizes and in situations where independent
external test datasets are unavailable [65,66]. Two complementary ap-
proaches were applied: repeated stratified k-fold cross-validation [67]
and non-parametric bootstrap resampling [68].

For repeated stratified k-fold cross-validation (CV), the dataset (N =
109) was divided into five approximately equal folds (k = 5). Stratifi-
cation was performed using a combined index of discretised DDI bins
and dam type to preserve both the response distribution and relevant
categorical structure across folds. The 5-fold procedure was repeated 10
times with independent stratifications, resulting in a total of 50 out-of-
sample evaluations. In each iteration, models were calibrated on four
folds and evaluated on the held-out fold. Predictive performance was
quantified using RMSE, MAE, and R2, which were computed for each
fold and summarised as mean =+ standard deviation (SD) across all
repetitions. Cross-validated predictions for all observations were
retained and aggregated for subsequent diagnostic analyses, including
residual inspection, observed—-predicted relationships, and calibration
assessment [67].

To quantify uncertainty in predictive performance, non-parametric
bootstrap resampling (B = 1000) was applied to the paired observed
values and the corresponding cross-validated predictions. Empirical 95
% confidence intervals for RMSE and MAE were derived from the
resulting bootstrap distributions [68]. This procedure provides
uncertainty-aware estimates of predictive accuracy while preserving the
out-of-sample nature of the validation. The combined use of repeated
cross-validation and bootstrap resampling enables a robust assessment
of predictive accuracy, stability, and potential systematic bias under
repeated sampling, while avoiding reliance on a single arbitrary data
split. Although these resampling-based procedures do not replace vali-
dation on a truly independent external dataset, they provide a rigorous
and transparent internal evaluation of predictive generalisability under
the present data-limited conditions.

7. Results and discussions
7.1. Regression results

Predictive relationships for the DDI were calibrated by regressing the
selected seismic and dam-related variables against the observed DDI
values. The estimated coefficients for all candidate models are reported
in Tables 4-7, encompassing both the combined embankment-dam
dataset and the individual dam-type subsets. The resulting R? demon-
strates the strong explanatory power of the predictor variables. The
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Table 4
Regression coefficients of the predictive models for the combined data analysis
(all Embankment dam types).

Parameters Modell Model2 Model3 Model4
Coefficients B1 —10.144 1.123 -3.017 —37.188
B2 10.513 —7.093 0.621 9.956
B3 —-2.177 7.161 1.037 —0.631
Ba 0.197 1.027 —0.036 0.997
Bs 0.164 0.180 —0.006 —0.036
Be 0.287 0.661 0.007 —0.007
(74 0.076 0.166 —0.028 0.008
Bs - —0.027 0.342 —-0.079
Bo - —0.005 - 0.219
Bio - 0.005 - -
Bi1 - ~0.016 - -
Bua - 0183 - -
Metrics R? 0.538 0.612 0.620 0.621
Adjusted R? 0.505 0.563 0.589 0.586
RMSE 0.981 0.898 0.889 0.888
Table 5
Regression coefficients of predictive models for the CED.
Parameters Modell Model2 Model3 Model4
Coefficients By 1.145 0.673 —0.520 4115
B2 4.292 —4.635 0.560 —0.728
B3 —1.462 5.023 0.412 0.088
Ba —0.299 1.013 —0.023 0.424
Bs 0.143 0.059 —0.019 —0.023
Be - 0.766 0.011 —-0.019
By - 0.966 - 0.011
Bs - -0.018 - -
Bo - —0.017 - -
Bro - 0.010 - -
[311 - -
Metrics R? 0.630 0.701 0.703 0.703
Adjusted R? 0.550 0.534 0.623 0.605
RMSE 0.930 0.837 0.833 0.833
Table 6
Regression coefficients of the predictive models for the RCD.
Parameters Modell Model2 Model3 Model4
Coefficients P1 2.420 —11.874 —17.637 —1411.530
B2 5.748 0.556 0.524 362.169
B3 —-2.717 —33100.787 5.070 —23.437
Pa 0.147 —7.438 —0.070 5.258
Bs 0.231 3.492 0.001 —0.073
Pe - 0.634 0.007 —0.022
B7 - —0.651 - 0.013
Bs - —0.057 - -
Bo - 0.000 - -
B1o - 0.005 - -
P11 - - - -
Metrics R? 0.427 0.434 0.435 0.611
Adjusted R? 0.290 0.080 0.265 0.468
RMSE 0.957 0.952 0.951 0.789

type-specific calibrations capture dam type-dependent behaviour,
whereas the combined model reveals consistent patterns across the
broader embankment dam. Scatter plots of predicted versus observed
values (Fig. 7) further confirm that the calibrated models accurately
reproduce the measured data, thereby demonstrating their adequacy in
capturing the principal trends in the dataset.

Residuals were analysed to evaluate model adequacy and detect
systematic errors. Residuals of the final selected model plotted against
Rpyp are shown in Fig. 8. Residuals plotted against Ryy, exhibit a random
scatter around zero with no discernible trend, suggesting homoscedas-
ticity and the absence of distance-dependent bias. These results
demonstrate the reliability of the predictive models across the observed
DDI range.
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Table 7
Regression coefficients of the predictive models for the HED.
Parameters Modell Model2 Model3 Model4
Coefficients B1 6.740 0.929 1.437 0.991
B2 12.936 0.430 4.497 0.932
B3 —6.412 0.654 —7.338 0.453
Ba 0.069 0.340 0.007 —7.338
Bs 0.035 0.349 0.007 0.007
Be - 1.032 —0.001 0.007
Bz - 1.233 - —0.001
Bs - ~0.050 - -
Bo - 0.003 - -
Bio - 0.003 - -
Bll - - - -
Metrics R2? 0.805 0.796 0.805 0.805
Adjusted R? 0.783 0.745 0.779 0.774
RMSE 0.573 0.586 0.573 0.573

7.2. Model selection and performance discussion

Final model selection was guided by both LLH and residual-based
metrics to balance predictive accuracy, parsimony, and explanatory
power. From Table 8, we can see that across the combined dataset
analysis, Models 3 and 4 consistently outperformed the other candi-
dates, achieving the highest R? (0.6197-0.6210) and adjusted R2
(0.5858-0.5886) values, alongside the lowest MSE, RMSE, MAE, MAPE,
and sMAPE, indicating superior predictive capability. LLH results
corroborate these findings, with the lowest scores (1.3001-1.3018)
reflecting minimal information loss. Dam type-specific analyses showed
similar patterns: for HED, Models 3 and 4 attained R? ~ 0.805 with the
lowest errors; in RFD, Model 4 achieved the highest R? (0.6112) and
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lowest error measures; and for CED, Models 3 and 4 maintained R? ~
0.703 with consistently low error metrics, demonstrating robustness
across dam types.

Predicted DDI values (Fig. 9) indicate that Models 1 and 2 produce
conservative estimates, whereas Models 3 and 4 yield higher, more
responsive predictions. Such sensitivity is advantageous in seismic
damage assessment, where underestimation may compromise pre-
paredness and increase risk [69], while overestimation, though poten-
tially resource-intensive, generally ensures system protection [70].
Accordingly, Models 3 and 4 are recommended for predictive applica-
tions due to their superior accuracy, robustness, and reliability across
dam types.

7.3. Predictive model validation discussion

The out-of-sample validation results reveal consistent and systematic
differences in predictive accuracy and stability among the four candi-
date models. Across repeated stratified cross-validation and bootstrap
uncertainty analysis, Models 3 and 4 consistently outperform Models 1
and 2, while Model 2 exhibits unstable and non-generalizable behav-
iour. The results of the repeated stratified 5-fold cross-validation (10
repetitions) are summarised in Table 9. Model 3 achieves the lowest CV
RMSE (0.95002 + 0.01370) and lowest CV MAE (0.78993 + 0.00894),
followed by Model 4 (CV RMSE = 0.97261 + 0.02273). Model 1 shows
moderate predictive performance, whereas Model 2 exhibits substan-
tially larger variability (CV RMSE SD = 0.38794; CV R? = 0.042 +
1.464), indicating weak and unstable generalisation.

These quantitative results are visually supported by the cross-
validation scatter and residual plots (Figs. 10 and 11). In Fig. 10,
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Fig. 8. Residuals plotted against hypocentral distance (Rpyp) for the four regression models: (a) Model 1; (b) Model 2; (c) Model 3; (d) Model 4.

3 3 . : i 3 : ; : g
(a) (b)
21 2] - L
m
o8 T 1 * '
] . - ] L
4 . - | -" B o '-\‘
3 L =
201" ol g w2 04 L [
5 [ ] ] " B h & .‘ [ ] l. i. [ | oy -‘
[~ | = i, Eo .I. - ~ il []
=11 = L 55| s [
= " ] L]
bl I " " I" g
21 S .a 21 L
3 ; . : . 3 . ’ . .
0 50 100 150 200 250 0 50 100 150 200 250
Rhyp (Km) Rhyp (Km)
3 : . : : 3 : - : .
(©) (d)
2 [ ] L 24 u L
L] L
1 " e r 1 ‘ g
] 1 [
21 W aet z | & F .
= = B = B
2077y g = F 201y g i
]
3 "W Al & 8 " ‘- S H
-1 By [ ] F -14 ‘ "] L
= a_ ol m ﬂ By oH n
i a® a® = [
) [ o] [
3 : : . . 3 . : . :
0 50 100 150 200 250 0 50 100 150 200 250
Rhyp (Km) Rhyp (Km)

Table 8
Performance matrices of all four models for the combined and individual dam-type data analyses.
Dam Type Model Bias R? Adj R? MSE RMSE MAE MAPE SMAPE LLH
All Modell 0.000 0.538 0.505 0.962 0.981 0.835 44.748 37.745 1.399
Model2 0.001 0.612 0.563 0.806 0.898 0.773 43.526 38.344 1.311
Model3 0.000 0.620 0.589 0.791 0.889 0.750 43.142 37.415 1.302
Model4 0.000 0.621 0.586 0.788 0.888 0.748 43.099 37.249 1.300
HED Modell 0.000 0.805 0.783 0.329 0.573 0.452 29.378 26.990 0.863
Model2 0.000 0.796 0.745 0.343 0.586 0.468 31.798 29.219 0.884
Model3 0.000 0.805 0.779 0.328 0.573 0.450 29.033 26.739 0.862
Model4 0.000 0.805 0.774 0.328 0.573 0.450 29.033 26.739 0.862
RFD Modell 0.000 0.427 0.290 0.917 0.957 0.853 40.766 35.192 1.376
Model2 0.003 0.434 0.080 0.906 0.952 0.817 39.985 33.982 1.370
Model3 0.000 0.435 0.265 0.904 0.951 0.810 39.821 33.726 1.369
Model4 0.000 0.611 0.468 0.622 0.789 0.646 28.169 25.639 1.182
CED Modell 0.000 0.630 0.550 0.866 0.930 0.778 40.328 33.260 1.347
Model2 0.000 0.700 0.534 0.701 0.837 0.678 34.670 27.910 1.242
Model3 0.000 0.703 0.623 0.694 0.833 0.663 34.827 27.694 1.237
Model4 0.000 0.703 0.605 0.694 0.833 0.662 34.732 27.605 1.237

Model 3 exhibits the tightest clustering around the 1:1 reference line,
indicating the highest predictive accuracy and minimal systematic bias.
Model 4 follows closely with only slightly greater dispersion. Model 1
displays visibly larger scatter and deviations at the extreme values,
while Model 2 shows substantial dispersion and weak alignment with
the 1:1 line, confirming poor generalisation. The residual plots in Fig. 11
further reinforce these trends: residuals of Models 3 and 4 are sym-
metrically distributed around zero with no pronounced hetero-
scedasticity, whereas Model 1 shows larger residual amplitudes and
Model 2 exhibits wide residual spread, outliers, and non-random
structure indicative of numerical instability.

Fig. 12 compares the distribution of predictive errors for all candi-
date models under repeated cross-validation. Model 3 consistently
achieves the lowest median RMSE and the narrowest interquartile range,
indicating both superior predictive accuracy and robustness. Model 4

11

performs comparably but with slightly higher medians and wider
spreads, while Model 1 occupies an intermediate position. In contrast,
Model 2 exhibits a markedly wider error distribution with numerous
outliers and heavy-tailed behaviour, confirming pronounced instability
and unreliable predictive performance.

Bootstrap resampling of cross-validated predictions (B = 1000)
provides uncertainty-aware estimates of prediction error (Table 10).
Model 3 exhibits the lowest RMSE and MAE together with the narrowest
95 % confidence intervals, confirming superior robustness. Model 4 also
shows relatively narrow intervals but remains slightly inferior to Model
3. Model 2 displays the widest uncertainty bounds, further indicating
limited predictive reliability.

The out-of-sample validation results are fully consistent with the
training-based goodness-of-fit and log-likelihood (LLH) evaluation pre-
sented in Table 8. Models 3 and 4 previously achieved the highest R?
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Table 9
Repeated stratified 5-fold cross-validation results (mean + SD).

Model

CV RMSE (mean + SD)  CV MAE (mean + SD)  CV R? (mean =+ SD)

Model 1 1.02310 £ 0.01288 0.87275 + 0.01041 0.493 £ 0.012
Model 2 1.11080 + 0.38794 0.92611 + 0.29310 0.042 + 1.464
Model 3 0.95002 + 0.01370 0.78993 + 0.00894 0.562 + 0.012
Model 4  0.97261 + 0.02273 0.80724 + 0.01903 0.539 + 0.021

(0.6197-0.6210) and adjusted R? (0.5858-0.5886), together with the
lowest MSE, RMSE, MAE, MAPE, and sMAPE, and the lowest LLH values
(1.3001-1.3018). The agreement between in-sample and cross-
validated out-of-sample rankings indicates that the superior perfor-
mance of Models 3 and 4 is not driven by overfitting.

Based on the combined evidence from repeated cross-validation
(Table 9), bootstrap uncertainty analysis (Table 10), residual di-
agnostics, and training-based goodness-of-fit and LLH metrics (Table 8),
Model 3 is selected as the final predictive model, with Model 4 identified

DDI = —3.017 + 0.621M + 1.037 log R — 0.036 R — 0.006Hp, + 0.007Ap, — 0.028 DT; — 0.342DT,

DDI = —37.19 + 9.96 M — 0.63 M? + 0.997 log R — 0.04R — 0.007H,, + 0.008Ap, — 0.08DT; — 0.22DT,
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as a secondary alternative. The unstable behaviour of Model 2 precludes
its use for predictive applications. Overall, the consistency between
likelihood-based in-sample metrics and resampling-based out-of-sample
validation provides strong statistical support for the robustness and
predictive generalisability of the selected model under data-limited
conditions. Although these internal validation procedures do not sub-
stitute for validation on a truly independent external dataset, they
provide a rigorous and transparent internal assessment of predictive
generalisability for the present study.

7.4. Recommended DDI predictive model equations

Based on the calibration, residual, likelihood analyses, and out-of-
sample validation results, the final recommended predictive equations
for DDI are presented below, along with their corresponding applica-

bility ranges:

1) For all types of Embankment dams:

@)

®
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Fig. 10. Cross-validated observed versus mean predicted dam damage intensity (DDI) for all four models. Points represent out-of-sample predictions obtained from
repeated stratified 5-fold cross-validation (10 repetitions), with predictions averaged across repeats. The dashed line denotes the 1:1 reference for perfect agreement.
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Table 10

Bootstrap 95 % confidence intervals for RMSE and MAE based on cross-validated
predictions.

Model CV RMSE CV RMSE 95 % CI CV MAE CV MAE 95 % CI
Model 1 1.02310 0.89836-1.12570 0.87275 0.75247-0.97121
Model 2 1.11080 0.84205-1.07130 0.92611 0.70496-0.90471
Model 3 0.95002 0.83994-1.04770 0.78993 0.68580-0.88460
Model 4 0.97261 0.86116-1.08120 0.80724 0.69388-0.90796
M = 8,M is Moment magnitude (M,,)
. 82 < R < 175, R is Hypocentral distance (R; in km
Constraints = - = ’ YP ( hyp)

6 < Hp < 47,Hjp is Height of Dam in m
17 < Ap < 55, Ap is Age of dam in years

3) For the RFD:

DDI=-17.637 +0.524M +5.0701og R — 0.069R + 0.001 Hp, + 0.007Ap

an
interquartile range (IQR), the central line denotes the median, whiskers indicate
1.5 x IQR, and red crosses denote outliers.
DDI = —1411.530 + 362.169M — 23.437M? + 5.258 log R — 0.073R — 0.022Hp, + 0.013Ap 12)

6 <M < 8,M is Moment magnitude (M,,)
15 < R < 234, R is Hypocentral distance (Rhyp) in km
5 < Hp < 105, Hp, is Height of Dam in m

7 <M < 8,M is Moment magnitude (M,,)
65 < R < 170, R is Hypocentral distance (Rpyp) in km

Constraints = 1 < Ap <120, Ap is Age of dam in years Constraints = 5 < Hp < 105, Hp, is Height of Dam in m
(0,0) : HED 1 < Ap < 56,A) is Age of dam in years
(DT:,DT,) € {(0,0),(1,0),(0,1)}, (1,0) : RFD
(0,1) : CED 4) For the CED:
DDI = —0.520 +0.560M + 0.4121og R — 0.023R — 0.019 Hy, + 0.011Ap
13)
DDI = 4.115 — 0.728 M + 0.088 M? + 0.424 log R — 0.023 R — 0.019 Hp, + 0.011Ap 14)

2) For the HED:

DDI = 1.437 + 4.497M — 7.338 log R + 0.007 R + 0.007 Hp, — 0.001A,
)

Constraints =

6 <M < 8,M is Moment magnitude (M,,)
15 < R < 236, R is Hypocentral distance (Ryy,)in km
9 < Hp < 95, Hp is Height of Dam in m
2 < Ap <120, Ay, is Age of dam in years

DDI = 0.991 + 0.932M + 0.453M? — 7.338 log R -+ 0.007R + 0.007Hp, — 0.001A (10)




P. Anbazhagan and S. Prakash

100
6(;7
333

Ap 100-66.733: 7100 R,
hyp

(@)

Soil Dynamics and Earthquake Engineering 203 (2026) 110079

M

w

100
66.7

333

6:7-100 R

AL 100667333 byp

333
66.7
100

H,

(®)

Fig. 13. Relative contribution of each predictor variable (Magnitude (M), Hypocentral Distance (Rpyp,), Dam Height (Hp), Age of Dam (Ap)) to DDI predictions for

rockfill dams: (a) Model 3; (b) Model 4.
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Fig. 14. Relative contribution of each predictor variable (Magnitude (M), Hypocentral Distance (Rpyp,), Dam Height (Hp), Age of Dam (Ap)) to DDI predictions for

earth core dams: (a) Model 3; (b) Model 4.

For operational use, it is important to note that DDI is typically re-
ported in discrete intensity levels. Therefore, predicted DDI values that
are not natural numbers should be rounded to the nearest integer [71].
For example, a predicted value of 1.5 would be rounded to 2. Addi-
tionally, these predictive equations are valid only within the ranges of
independent variables used for model calibration. Extrapolation beyond
these ranges may reduce predictive accuracy. By following these
guidelines, Egs. (7)-(14) can be effectively used to estimate DDI across a
variety of dam types and seismic scenarios, providing a robust tool for
risk assessment and decision-making.

7.5. Relative contribution of predictor variables in DDI predictions

The relative importance of the predictor variables Ap, Hp, Rpyp, and
M,, was analysed for the top-performing DDI models (Models 3 and 4) of
each dam type (rockfill and earth-cored). The homogeneous earthen
dam type was excluded from this analysis due to limited variability in
M,,, as all data corresponded to a single earthquake magnitude. A
sensitivity analysis was used to quantify the relative contributions of
each predictor variable to the DDI. Each variable was varied systemat-
ically across its observed range while the others were held constant at
their mean values. The effects were normalised to percentage contri-
butions following the procedure outlined in previous studies [72-74].
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For rockfill dams in Model 3 (Fig. 13a), the DDI predictions were
strongly dominated by the Ry, which contributed 75.54 % of the total
influence. The remaining variables exhibited comparatively minor
contributions, with Ap at 11.64 %, M,, at 9.73 %, and Hp at 3.08 %. In
Model 4 (Fig. 13b), however, the relative contribution pattern became
more balanced. The influence of Ryy,, decreased to 41.19 %, while the
contribution of Hp increased substantially to 35.25 %, indicating that
dam height becomes a critical factor in determining seismic response as
model complexity improves. The contributions of My, (11.97 %) and Ap
(11.60 %) were also comparable, suggesting a more integrated influence
of both seismic and structural parameters. For earth-cored dams, the
relative contributions of predictor variables were more evenly distrib-
uted across both Model 3 (Fig. 14a) and Model 4 (Fig. 14b). In both
models, Rpy, remained the most influential parameter, contributing
approximately 52 % to DDI prediction. The Hp accounted for around 21
%, followed by Ap with 17.6 %, and M,, with approximately 9 %. These
findings reinforce that the Ryyp is the primary earthquake-related
parameter influencing DDI, while the Hp serves as the primary struc-
tural parameter influencing DDI predictions most. The Ap and M,y pro-
vide secondary modulation, reflecting the effects of structural mass and
input energy, respectively.
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7.6. Application and practical significance of the DDI scale and predictive
model

The DDI scale and its associated predictive models provide a
screening-level, data-driven, semi-empirical framework for preliminary
seismic damage assessment and portfolio-level risk screening of
embankment dams. The framework is not intended to replace detailed
numerical analyses of dam behaviour, but rather to complement them
by supporting early-stage decision-making and prioritisation. High-
fidelity numerical approaches, such as nonlinear dynamic finite-
element simulations of cracking, permanent displacements, and slope
instability, require extensive site-specific inputs, including material
properties, foundation conditions, and frequency-dependent ground-
motion characterisation, as well as substantial computational resources.
As a result, such methods are impractical as first-stage tools for large
dam inventories or regional-scale hazard assessments [75]. For example,
following an earthquake affecting a region, the DDI framework can be
applied to rapidly screen a portfolio of dams and prioritise those
requiring immediate detailed assessment.

In contrast, the DDI framework employs readily available and widely
reported parameters (moment magnitude, hypocentral distance, dam
height, age, and dam type) to generate consistent empirical indicators of
expected damage severity. This enables rapid, transparent, and inter-
nally consistent ranking and prioritisation of embankment dams across
regional or national portfolios, consistent with established risk-index
approaches in dam safety practice [75]. The DDI therefore supports
comparative assessment under conditions where detailed geotechnical
and seismic information is unavailable or incomplete. By translating
historical and post-earthquake qualitative observations (e.g., crack di-
mensions, leakage severity, deformation indicators, and post-event
operability) into a structured damage-intensity scale, the DDI enables
the systematic integration of legacy case histories into modern seismic
risk-screening workflows. This capability is not directly achievable
through purely numerical displacement-based analyses and provides a
means of leveraging existing observational evidence within a consistent
assessment framework.

Accordingly, the DDI fits within a two-tier seismic risk assessment
paradigm, in which an initial screening-level DDI-based evaluation is
used to identify and prioritise potentially vulnerable dams, followed by
targeted site-specific geotechnical and seismic analyses for those iden-
tified as high risk (i.e., higher DDI levels). Such a workflow enhances the
transparency, consistency, and cost-effectiveness of seismic safety
evaluations and aligns with internationally recommended dam-safety
protocols [49,75].

8. Summary and Conclusions

This study analysed historical cases of earthquake-induced damage
to embankment dams, evaluated the effectiveness of the MMI scale to
effectively classify the damage, and addressed the lack of dedicated
seismic dam damage classification methods. The MMI scale was found to
be limited in reliably classifying dam-specific earthquake damage,
motivating the development of a novel seismic Dam Damage Intensity
(DDI) scale. The DDI classifies seismic dam damage into five levels,
defined by specific damage descriptions, dam characteristics, and post-
earthquake usability. Scale was developed using data from approxi-
mately 109 dams affected by 16 earthquakes, integrating both seismic
and dam-specific parameters to provide a more comprehensive assess-
ment of potential damage severity. Due to the lack of predictive models,
DDI predictive models were developed using modified functional forms
of Intensity Prediction Equations (Models 3 & 4), Ground Motion Pre-
diction Equations (Model 2), and Dam Crest Settlement Models (Model
1), incorporating both seismic and dam parameters. The contribution of
the predictor variables in DDI prediction was also studied through
sensitivity analysis. The key findings indicate that:

16

Soil Dynamics and Earthquake Engineering 203 (2026) 110079

1) There is a notable absence of dedicated methodologies or scales for
classifying seismic damage to embankment dams. The MMI scale, in
particular, has limitations in effectively classifying seismic dam
damage, which has led to the creation of a novel seismic damage
classification known as the seismic DDI scale for more accurate dam
damage assessments.

2) Analysis of the compiled dataset indicates that reported seismic
damage to embankment dams is associated with earthquakes of
magnitude approximately M,, > 6.0 occurring within hypocentral
distances Rpyp < 250 km. These values reflect characteristics of the
available historical records rather than universal damage thresholds.

3) All models were evaluated using residual-based metrics and LLH to
balance predictive accuracy, parsimony, and explanatory power.
Intensity Predictive Equation (IPE) functional form-based models
(Models 3 and 4) consistently outperformed the others, achieving the
highest R? and adjusted R2, the lowest error metrics (MSE, RMSE,
MAE, MAPE, sMAPE), and the lowest LLH (1.300-1.302) for the
combined dataset, indicating strong predictive capability and mini-
mal information loss.
DDI models for earthen dams showed R? ~ 0.805 and LLH ~0.862 for
Models 3 and 4; for rockfill dams, Model 4 attained R? = 0.611 and
LLH ~1.182; for earth-cored dams, Models 3 and 4 reached R? ~
0.703 and LLH ~1.237. These results confirm the robustness of IPE-
based models (Models 3 and 4) across dam types.
Out-of-sample validation using repeated stratified cross-validation
and bootstrap uncertainty showed that the IPE-based models
(Models 3 and 4) consistently exhibited the strongest predictive
performance. Model 3 achieved the lowest cross-validated RMSE
(0.950 + 0.014) and MAE (0.790 + 0.009), followed closely by
Model 4 (CV RMSE = 0.973 + 0.023; CV MAE = 0.807 + 0.019).
Bootstrap analysis confirms the robustness of both IPE-based models,
with Model 3 exhibiting narrow 95 % confidence intervals for RMSE
(0.840-1.048) and MAE (0.686-0.885), and Model 4 showing
comparably constrained uncertainty ranges.
Sensitivity analysis showed that Ryy;, is the most influential seismic
factor controlling DDI, followed by M,,. Among dam parameters, Hp
was found to be the most influential factor, followed by Ap, indi-
cating its stronger role in seismic response. Hp refers to the total dam
height, not the height of the damaged section. Availability of more
detailed dam-specific data may alter these contributions.

In conclusion, the DDI scale and predictive models offer a reliable

tool for preliminary damage assessment for embankment dams in

earthquake-prone regions. These results highlight the importance of
integrating both seismic and structural characteristics for accurate
vulnerability assessment.
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9. Limitations and future research needs

This study has two main limitations: first, the relatively small sample
size may restrict the generalisability of the findings. Expanding the
dataset to include a broader range of dams across different regions and
geological conditions would provide more robust insights wherever
available. Second, while shear wave velocity (Vs) is recognised as an
important parameter for assessing material stiffness and dynamic
response, reliable site-specific Vs measurements were not available for
the site and dam. For this reason, Vs was not included in the final
models. Future research should aim to incorporate measured Vs values
whenever available, as this could strengthen model accuracy and prac-
tical applicability. A further important limitation is the absence of a
truly independent external validation dataset. While the employed in-
ternal resampling strategies provide a rigorous assessment of predictive
stability under data-limited conditions, they cannot fully substitute for
validation against independent post-event observations. Future research
should therefore seek to test the proposed DDI models on externally
sourced datasets as they become available. DDI models can include more
detailed site-specific geotechnical and seismological parameters when
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such data become available in future datasets. In addition, future work
may also benefit from the use of larger datasets and advanced damage
prediction techniques, such as machine learning.
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