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A B S T R A C T

Earthquakes pose significant risks to dam safety and jeopardize lives. Current damage assessment methods lack a 
standardized scale for classifying seismic damage to embankment dams, and the Modified Mercalli Intensity 
(MMI) scale falls short in addressing the complexities of dam damage. This study introduces: (1) a novel Dam 
Damage Intensity (DDI) scale, specifically designed to quantify earthquake-induced damage to embankment 
dams, and (2) novel empirical DDI predictive models that integrate seismic parameters: magnitude (Mw) and 
hypocentral distance (Rhyp) with dam characteristics: height (HD), age (AD), and dam type (DT). The DDI scale 
classifies damage into five levels, from minor (1) to complete failure (5). Based on the analysed dataset of 109 
dams affected by 16 earthquakes, potential seismic damage is associated with Mw ≥ 6.0 and Rhyp ≤ 250 km. Four 
functional forms of DDI predictive models were evaluated: two based on modified Intensity Prediction Equations 
(IPE) (Models 3 & 4), one from modified Ground Motion Prediction Equations (Model 2), and one from a 
modified dam crest settlement model (Model 1). IPE models consistently outperformed the others, achieving the 
highest R2 (≈0.62), lowest errors (MSE = 0.79, RMSE = 0.89, MAE = 0.75), and minimal log-likelihood value 
(1.300–1.302), and exhibited consistent predictive performance under repeated out-of-sample validation. 
Sensitivity analysis revealed that Rhyp and HD are the most influential seismic and dam parameters respectively, 
contributing to DDI predictions. DDI scale and predictive models offer a reliable tool for preliminary damage 
assessment for embankment dams in earthquake-prone regions.

1. Introduction

Embankment dams represent the predominant form of dam con
structed globally, comprising approximately 70 % of all existing dams 
[1,2]. These vital infrastructures fulfill a diverse array of functions, 
including flood mitigation, irrigation, water resource management, and 
hydroelectric power generation [3]. Typically constructed from natural 
materials such as soil, rock, and clay, the common types of embankment 
dams include earthfill, homogeneous earth, and rockfill dams [4]. 
However, the integrity of these structures can be severely challenged by 
seismic events, which may lead to catastrophic failures and pose sig
nificant risks to human safety and property [5]. Understanding the 
impact of seismic activity on embankment dams is, therefore, crucial for 
safeguarding these essential infrastructures.

Historical incidents highlight the vulnerability of embankment dams 
to earthquakes [6–10]. The Lower San Fernando Dam in California 
nearly collapsed during the 1971 earthquake, leading to improved 
design practices for earthquake resistance [11]. The 2011 Tōhoku 

earthquake in Japan raised concerns about the stability of these dams, 
calling for thorough assessments of their seismic resilience [12]. Most 
recently, the Mw 7.8 earthquake in Turkey on February 6, 2023, 
impacted over 100 dams, showing varying damage levels [13]. These 
events have spurred ongoing research into the seismic vulnerabilities of 
embankment dams to enhance future design and safety measures.

Assessing damage from seismic events in embankment dams presents 
several challenges that current damage assessment methods struggle to 
address. Established scales, such as the Modified Mercalli Intensity 
(MMI) scale, provide a qualitative assessment of earthquake intensity on 
a scale from I (not felt) to XII (complete destruction), heavily relying on 
personal observations from those who experienced the tremor [14]. 
Similarly, the European Macroseismic Scale (EMS) offers criteria for 
evaluating earthquake effects on buildings [15]. The damage ratio 
method further contributes to the analysis by comparing repair costs to 
the pre-earthquake value of the building, serving an important role in 
insurance and economic evaluations [16].

Despite enhancements made to the MMI scale by studies such as 
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Dowrick [17], it remains inadequate for evaluating damages to critical 
infrastructure, including embankment dams, due to its subjective nature 
and limitations at high-intensity levels. Anbazhagan et al. [18] high
lighted these shortcomings in assessing road damage from earthquakes 
and proposed a new damage scale to quantify such impacts. A significant 
limitation of the MMI when assessing damage to embankment dams is its 
failure to account for critical factors such as dam type and design, which 
are essential for an accurate evaluation of seismic responses. Addition
ally, the MMI's reliance on surface observations often overlooks internal 
damage or structural failures that may occur within these structures. As 
the need for comprehensive assessment methods intensifies in the wake 
of increasing seismic activity, addressing these gaps is crucial for 
enhancing the resilience and safety of embankment dams.

Furthermore, studies have proposed damage classification method
ologies and scales for structures such as reinforced concrete, bridges, 
and masonry buildings [19–21]. These methodologies enable effective 
evaluation of performance during earthquakes [22–25]. Current 
guidelines and frameworks provide practitioners with the necessary 
tools to assess the seismic damage classifications and damage scaling of 
these structures [22,26]. However, there is a significant gap in the study 
on comparable damage classification systems and damage scales for 
embankment dams, which are also vulnerable to seismic risks. The lack 
of dedicated damage classification methodologies and damage scales for 
embankment dams highlights the need for further research to create an 
effective damage scale that addresses their unique vulnerabilities and 
performance characteristics during seismic events [22,27,28]. Devel
oping such a scale would enhance our understanding of the seismic risks 
of embankment dams, ultimately contributing to improved safety and 
resilience in earthquake-prone regions.

This paper introduces a novel seismic damage scale called the 
seismic Dam Damage Intensity (DDI) scale. DDI is developed to address 
the limitations of existing seismic damage assessment scales, such as the 
MMI. DDI is designed specifically to quantify earthquake-related dam
age to dams using historical earthquake records, offering a more effec
tive framework for qualitatively evaluating their structural integrity 
under seismic activity. MMI and the DDI are plotted against earthquake 
parameters, i.e., magnitude and hypocentral distance, to determine 
which damage intensity scale correlates best with these parameters. 
Additionally, we propose empirical DDI predictive models designed to 
predict damage induced due to earthquakes in embankment dams. 
These models integrate earthquake-related parameters, i.e., Magnitude 
(M) and Hypocentral Distance (Rhyp), alongside dam-specific charac
teristics such as Height (HD), Age (AD), and Dam Type (DT), and give the 
DDI predictions. We evaluate four functional forms for the predictive 
models: two based on modified Intensity Prediction Equations (IPE), one 
derived from modified Ground Motion Prediction Equations (GMPE), 
and another based on a modified dam crest settlement model. An 
analysis of the contributions of each predictor variable to DDI pre
dictions is performed to identify key factors influencing DDI outcomes. 
By introducing the DDI scale and DDI predictive models, this study aims 
to improve the accuracy of seismic damage assessments and advance the 
overall understanding of seismic risk management for embankment 
dams. The novel contributions of this work are: 1) Development of the 
Dam Damage Intensity (DDI) scale to classify the seismic damages in 
embankment dams; 2) Development of empirical DDI predictive models 
using seismic and dam parameters; 3) Evaluation of the contribution of 
predictor variables in the DDI predictions.

2. Seismically damaged dam dataset

We compiled a dataset of embankment dams that sustained damage 
during past earthquakes from a wide range of literature sources and 
historical records. Although numerous earthquakes have been reported 
to cause structural damage to dams, detailed documentation, particu
larly in the form of photographs and comprehensive descriptions, re
mains limited. This lack of systematic reporting poses challenges for 

researchers and engineers seeking to assess dam performance under 
seismic loading.

The dataset incorporates both earthquake-related and dam-specific 
parameters. Earthquake characteristics include moment magnitude 
(Mw), epicentral distance (Repi), and focal depth (Df). Wherever avail
able, MMI values at the dam sites were also collected. Dam parameters 
include height of dam (HD) and age of dam (AD). Damage descriptions 
were verified against photographic evidence when possible to ensure 
consistency and reliability. In total, the dataset covers 16 earthquake 
events, yielding 109 documented cases of damage to earthen dams. 
Table 1 summarises the earthquake events considered in this study and 
forms the basis for the development of the proposed damage intensity 
scale and predictive model. A detailed account of individual earthquakes 
and associated dam damage is provided in the supplementary dataset 
(Table S1). Fig. 1 shows the global distribution of earthquake events 
included in the compiled dataset. These damaging events occur across 
several major seismically active regions, China, Japan, Turkey, the 
United States, India, and the Philippines, demonstrating that the dataset 
is not confined to a single geographic or tectonic context. For each re
gion, the number of affected dams and corresponding earthquake 
magnitudes are summarised, illustrating the range of seismic loading 
conditions represented. The documented events span magnitudes of Mw 
6.7–8.0, hypocentral distances (Rhyp) of 15–234 km, and focal depths of 
6–62.9 km. Although earthquake-induced dam-damage cases remain 
globally sparse, the dataset incorporates observations from multiple 
continents, diverse tectonic regimes, and different dam portfolios. 
Because MMI values were not available for every site, they are reported 
for 78 dam locations only, as indicated in Table S1 (Supplementary 
dataset).

3. Seismic Dam Damage Intensity Scale

Historical documentation of earthquake-induced dam damage is 
predominantly qualitative, relying on narrative descriptions, photo
graphic evidence, and non-standardised engineering notes. The dataset 
compiled for this study includes 109 such cases, encompassing cracking, 
leakage, deformation, settlement, slope movement, and operational 
disturbances. This heterogeneity, combined with the fundamentally 
different seismic response of dams compared with buildings or lifelines, 
necessitates a dedicated, standardised approach for translating 
descriptive observations into a consistent classification system. Existing 
macroseismic intensity scales, such as the Modified Mercalli Intensity 
(MMI), are insufficient for this purpose: they describe general shaking 
effects at the community scale and provide only coarse references to 
dams at very high intensity levels (e.g. “damage serious to dams, dikes, 
embankments” at MMI X and “great damage to dams” at MMI XI) [14]. 
Such general intensity scales are not tailored to structures like dams, 
tunnels, and roads and lack the structural resolution needed for engi
neering analyses [18,35,36].

The Dam Damage Intensity (DDI) scale is introduced to address these 
limitations. DDI is a structured, dam-specific framework designed to 
enable reproducible classification of seismic damage. The need for DDI 
arises directly from the qualitative nature of historical damage records 
and the lack of dam-focused criteria in general intensity scales. The DDI 
scale establishes explicit, rule-based physical criteria for assigning 
damage levels, thereby minimising subjective interpretation. These 
criteria include quantitative ranges for crack width and depth, classifi
cations of leakage severity, thresholds for measured deformation or 
displacement (e.g., crest settlement or lateral movement), observable 
indicators of slope instability, and post-earthquake operability or repair 
requirements. Each indicator is defined through clear numerical or 
categorical thresholds derived from documented dam case histories [31,
37] and international best-practice guidance for empirical damage 
assessment [38]. Because the criteria are explicitly specified, consistent 
application of the rules ensures that independent evaluators would 
assign the same DDI level for the same set of observations, thereby 
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improving reproducibility and reducing ambiguity in empirical damage 
classification.

DDI levels are assigned directly from observed damage descriptors 
and are not derived from MMI or any other seismic parameter. Conse
quently, historical damage records were not reclassified from MMI to 
DDI, and MMI values are reported solely for contextual comparison. This 
direct assignment from observed damage ensures that subsequent ana
lyses, such as correlation or regression using DDI, remain free from 
circular reasoning. The DDI scale defines five levels of damage severity 
(I–V), capturing the full spectrum of seismic effects relevant to 
embankment dams. Primary seismic effects include deformation, set
tlement, tilting, longitudinal cracking, leakage, and sliding, while sec
ondary effects, such as liquefaction and earthquake-induced landslides, 
are also incorporated. These mechanisms represent well-documented 
precursors to functional impairment and, at higher levels, structural 
failure. Table 2 summarises the detailed criteria associated with each 
DDI level, ranging from minor, non-structural impacts at Level I to 

complete structural destruction at Level V. Representative photographic 
evidence illustrating these levels is provided in Fig. 2. By relying on 
measurable indicators and focusing on observable structural behaviour, 
the DDI scale establishes a transparent, reproducible, and engineering- 
relevant framework for evaluating seismic damage to embankment 
dams. This contributes to a more rigorous understanding of dam 
vulnerability and performance under earthquake loading.

4. Classification of damaged dams

In this section, we compile observed cases of seismic dam damage 
documented in historical records. Concurrently, earthquake parameters 
and dam characteristics, including DT, HD, and AD, were extracted from 
these sources. Reported MMI intensity at the dam site was also extracted 
from these sources for contextual comparison with DDI. A comprehen
sive analysis of all recorded instances of dam damage was conducted, 
leading to the systematic reclassification of the dams according to the 

Table 1 
List of earthquake events used for the scale development.

Earthquake Name Date Epicentre Mw Depth (km) Number of Dams References

Lat(◦N) Long(◦E)

Nigata Earthquake June 16, 1964 37.8 139 7.6 10 1 [29]
Santa Barbara Earthquake June 29, 1925 34.3 − 119.8 6.8 10 1 [29]
Imperial Valley Earthquake June 22, 1915 32.75 − 115.3 6.9 6 1 [30]
Hebgen Lake Earthquake August 18, 1959 44.863 − 111.335 7.2 25 1 [30]
Tokai-oki Earthquake May 16, 1968 40.9 143.35 7.9 26 1 [29]
Hokkaidou Nanseioki Earthquake July 2, 1973 43.233 145.785 7.8 48 1 [29]
Miyagi-Oki Earthquake June 12, 1978 38.15 142.2167 7.4 30 2 [29]
Nihonkai-Chubu Earthquake May 26, 1983 40.4 138.91 7.9 24 3 [29]
Chiba-Touhouoki Earthquake December 17, 1987 35.372 140.519 6.7 62.9 1 [29]
Philippines Earthquake July 16, 1990 15.7 121.1167 7.7 25.1 1 [29]
Northridge Earthquake January 17, 1994 34.213 − 118.537 6.7 18.2 1 [31]
Kobe Earthquake January 16, 1995 34.6 135 6.9 22 1 [29]
Bhuj Earthquake January 26, 2001 23.4 70.28 7.7 25 4 [32]
Wenchuan Great Earthquake May 12, 2008 30.989 103.329 8 19 66 [33]
Pazarcık Earthquake February 6, 2023 37.288 37.043 7.7 8.6 9 [34]
Elbistan Earthquake February 6, 2023 38.089 37.239 7.6 7 11 [34]

Abbreviations: Lat: Latitude, Long: Longitude, Mw: Moment Magnitude.

Fig. 1. Map illustrating the location of the epicentre of earthquakes considered in DDI scale development.
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newly proposed DDI scale, as summarised in the supplementary dataset 
(Table S1). In the classification process, damaged embankment dams 
have been categorized into three principal types: homogeneous earth 
dams (HED), rockfill dams (RFD), and earth-fill or earth-cored dams 
(CED), based on their materials and construction method. The dataset 
was carefully refined to ensure that each dam type incorporates critical 
earthquake parameters (Mw, Repi, and Df) along with relevant dam 
characteristics (HD, AD) necessary for developing a functional DDI pre
dictive model. In Fig. 3, the dataset for embankment dams is summar
ised, along with the new DDI scale classifications. The finalized dataset, 
which will serve as the foundation for developing predictive models for 
DDI, is presented in the supplementary dataset (Table S1).

Fig. 4 presents histograms illustrating the frequency distributions of 
key variables in the dataset, summarising the main predictors and 
response used in the analysis. Earthquake parameters (Mw and Rhyp) 
span a wide range of shaking intensities, with Mw mostly between 6.5 
and 8 and Rhyp from 15 m up to 234 km. In the dam-related variables, 
heights range from 5 m to 105 m, with most cases below 40 m, and ages 
vary from newly constructed to over 120 years. Categorical variables 
include three dam types (HED, CED, RFD), while DDI values cover all 
defined damage levels (DDI1–DDI5), with lower levels being more 
frequent. It is important to note that MMI values are not uniformly 
documented for all individual dams or their specific geographic loca
tions. In many cases, multiple MMI values correspond to a single DDI 
value, as shown in Table 2, which aligns with the definitions of the new 
DDI scale. Fig. 5a–d illustrate the relationships of MMI and DDI with key 
earthquake parameters across all embankment dam types, offering 
qualitative insight into their observed behaviour. Specifically, Fig. 5a 
shows that MMI data are incomplete for certain magnitudes, and no 
discernible trend with earthquake magnitude (Mw) is apparent. In 
contrast, Fig. 5b demonstrates that DDI values are available across all 
magnitudes, revealing a significant and consistent trend when appro
priately grouped. Similarly, Fig. 5c highlights the limited availability of 
MMI data across a broad range of Rhyp, with no clear trend observed. By 
comparison, Fig. 5d shows that DDI values cover a wide range of Rhyp, 
exhibiting a distinct and consistent trend. These observations are 
consistent with the findings of [18], which reported no clear trend of 
MMI with either Mw or Rhyp when classifying seismic road damage, 
further supporting the limited applicability of MMI for dam-specific 
seismic assessments.

The consistent trends observed for DDI with seismic parameters in 
Fig. 5b and Fig. 5d reflect the scale's intrinsic design. Because DDI is 
defined exclusively from observable structural damage descriptors such 
as crack width and depth, seepage severity, slope deformation, crest 
settlement, and operational impairment, it represents a dam-specific 
engineering damage state rather than a shaking-intensity metric. DDI 
is therefore expected to exhibit stronger statistical links to seismic 
loading than a generic intensity measure (e.g. MMI) not tailored to 
dams. By contrast, MMI is a community-based shaking intensity scale 
describing general effects on people and buildings, with only limited 
reference to dam damage at very high intensities (MMI X) [14]. A 
stronger statistical association between DDI and seismic parameters is 
therefore expected and does not arise from circularity or reclassification 
bias. Nevertheless, all observed trends are constrained by the sparse and 
heterogeneous nature of historical damage documentation, which in
troduces inherent epistemic uncertainty [38].

Analysis of the dataset indicates that the minimum earthquake 
magnitude associated with observed dam damage is Mw 6.5, while the 
maximum hypocentral distance is 250 km. This observed lower bound of 
Mw 6.5 should not be interpreted as a universal threshold, but rather 
reflects the characteristics and completeness of the compiled historical 
dataset. Based on these observations, we also recommend an Mw of 6.0 
and a maximum Rhyp of 250 km from the dam site to the epicentre 
during an earthquake event in which seismic damage to the dam may 
occur. It should be noted that dam damage may also result from sec
ondary effects such as tsunamis, seiches, or cascading failures of 

Table 2 
Proposed Dam Intensity Scale to define seismic damage of Embankment Dams.

DDI 
Level

Damage 
Description

Post-Earthquake 
Functional 
Condition

Typical Historical 
Contexta

Reported 
MMI in 
Historical 
Recordsa

1 Slight Damage: 
Damage is 
limited to minor 
superficial cracks 
(width <1 cm, 
depth <1 m) with 
no leakage, 
subsidence, or 
structural 
damage to 
auxiliary 
facilities.

Fully 
operational; 
only minor 
cosmetic repairs 
needed.

Often observed in 
relatively modern 
dams located at 
larger epicentral 
distances, where 
shaking levels 
were light to 
moderate.

XI, VII, 
VIII, VI

2 Minor Damage: 
Minor cracks 
along the crest 
(width <5 cm, 
depth 1–2 m), 
slight leakage, 
and no signs of 
subsidence or 
slope failure are 
observed.

Operational; 
minor repairs 
required to 
restore initial 
condition.

Reported in dams 
constructed in the 
mid-20th 
century, located 
at moderate 
distances from 
the epicentre and 
subjected to 
moderate 
shaking.

VI, VII, 
VIII

3 Medium Damage: 
Small to medium 
cracks (5–10 cm 
wide, 2–3 m 
deep), slight to 
medium leakage, 
and signs of 
subsidence 
without major 
slope failure. 
Possible damage 
to auxiliary 
facilities.

Operation 
restricted; 
substantial 
repairs required 
before resuming 
normal use.

Typically 
observed in 
embankment 
dams constructed 
before the 
adoption of 
modern seismic 
design practices, 
located at 
moderate to 
relatively short 
distances from 
the epicentre, 
where shaking 
was strong.

VIII, IX, X, 
VI

4 Serious Damage: 
Large cracks 
(width >10 cm, 
depth >3 m), 
significant 
leakage, signs of 
landslides or 
tilting, and 
localized 
displacement. 
Dams are 
severely 
damaged but not 
failed and require 
immediate 
partial seismic 
retrofitting.

Dam crest 
generally closed 
to vehicle access; 
major structural 
repairs required.

Frequently 
associated with 
dams constructed 
without formal 
seismic design 
provisions, 
located near the 
epicentre and 
exposed to very 
strong shaking.

X, XI, VII, 
VI, VIII

5 Severe damage or 
failure: Signs 
include major 
displacements, 
tilting, 
significant cracks 
(depth >5m, 
width >15 cm), 
and severe 
leakage. 
Complete 
collapse and 
liquefaction.

Full closure 
required; 
emergency 
response and 
major 
reconstruction.

Observed in dams 
lacking seismic 
design 
considerations, 
typically located 
close to the 
epicentre, where 
shaking intensity 
was extreme.

X, VII, VIII, 
VI

a Historical context and historical MMI values are provided only for descrip
tive purposes and were not used in assigning DDI levels.
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upstream dams. Although specific reports of such events were not 
included in our dataset, comprehensive risk assessments should account 
for these factors. Consequently, dams located near the sea, downstream 
of other dams, or adjacent to unstable upstream slopes may require 
consideration of larger distances for accurate seismic risk evaluation.

Overall, analysis of Fig. 5a–d demonstrates that the proposed DDI 
scale exhibits a strong correlation with earthquake parameters, con
firming its robustness and suitability for seismic risk assessment of 
embankment dams and at the same time it should be noted that all 
comparisons between DDI and MMI are based on historical damage re
ports and remain subject to substantial epistemic uncertainty due to 
sparse and heterogeneous data [38]. Global records of 
earthquake-induced embankment dam damage are limited, often con
taining only a few dozen well-documented cases, with many events 
reporting minimal or no damage [31]. Consequently, the dataset is 
small, geographically uneven, and dominated by narrative descriptions, 
which may introduce sampling bias and limit generalisability.

5. DDI predictive parameters and model

Seismic damage to earth dams is influenced by multiple factors, 
including earthquake, site subsurface and dam parameters. Seismic pa
rameters of source, path, and energy released are represented by 
earthquake size, distance, and source type. Site parameters from the 
base of the dam to non-amplifying layers can be represented by the 
average shear wave velocity. Dam parameters include age of dam (AD), 
height of dam (HD), dam type (DT) and stiffness of foundation and dam. 
Among these parameters, the dam damage reports consist of earthquake 

Fig. 2. Representative photographs illustrating common failures for each DDI Level.

Fig. 3. Number of dams corresponding to each DDI and the dam types (ho
mogeneous earth dams (HED), rockfill dams (RFD), and earth-fill or earth-cored 
dams (CED)).
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moment magnitude (Mw) and hypocentral distance (Rhyp) arrived from 
the shortest epicentral distance (Repi) and depth of earthquake and dam 
parameters, including age of dam (AD), height of dam (HD) and dam type 
(DT) are found along with damage description and damage images. 
Hence, in this study, we considered a total of five predictor variables 
obtainable from old damage reports to develop the DDI predictive 
model. The predictive model integrates seismic parameters and dam- 
specific features to comprehensively assess factors influencing DDI.

The ageing process influences material properties, soil compaction, 
and overall structural stability [39]. Older dams are generally more 

susceptible to seismic loading due to factors such as soil degradation, 
increased pore pressures, and heightened liquefaction potential [40]. In 
embankment dams, long-term ageing can reduce density, amplifying 
accelerations and displacements, and promoting plastic deformation 
within the core [41]. Material deterioration further decreases dynamic 
resistance, increasing the likelihood of damage [42]. The effects of 
ageing, however, vary by dam type: homogeneous dams are prone to 
degradation from seepage, cracking, and cumulative damage, while 
rockfill dams may experience gradual compaction and enhanced sta
bility through creep or dynamic settlements [43]. Earth-cored dams 

Fig. 4. Histograms showing the frequency distribution of key parameters in the dataset: (a) moment magnitude (Mw); (b) hypocentral distance (Rhyp); (c) dam height 
(HD); (d) dam age (AD); (e) dam type (DT); (f) Dam Damage Intensity (DDI).

Fig. 5. a) Plot of MMI versus magnitude (Mw); b) Plot of DDI versus magnitude (Mw); c) Plot of MMI versus hypocentral distance (Rhyp); d) Plot of DDI versus 
hypocentral distance (Rhyp).
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exhibit intermediate behaviour, reflecting a combination of consolida
tion and potential long-term weakening. These differences highlight the 
importance of incorporating both dam type and age when predicting 
DDI [44]. However, the data regarding how the material property of 
dams changes with time is not available in the literature.

Stiffness in terms of seismic velocity of compressional and shear 
waves can represent these characteristics very well, but very limited 
studies are available in this context. Furthermore, complied damaged 
dam dataset considered age as the interval between the year of con
struction and the year of the seismic event. Stiffness is somewhat rep
resented in dam height, which accounts on seismic energy absorption 
and structural resilience, with taller dams generally presenting higher 
sliding and overturning risks [42–44]. Height was measured from the 
crest to the lowest point of the original streambed, or, if unavailable, 
from the lowest point of the downstream toe [48]. Although the critical 
section height may differ from the maximum height, consistent data 
were lacking; thus, the reported dam height was used. Dam type dis
tinguishes between earthen, rockfill, and earth-cored embankment 
dams, each characterized by unique material properties, construction 
techniques, and seismic performance. In this study, to capture the effect 
of different types of embankment dams, the variable dam type (DT) was 

incorporated into the regression models.
Detailed geotechnical and seismic variables, such as ground-motion 

frequency content or foundation stiffness, were not incorporated in the 
DDI predictive model because these data are rarely available for broad, 
global dam inventories [31,49]. In their absence, we use proxies HD, AD, 
and DT that correlate empirically with historical failure trends and 
overall structural vulnerability. For example, AD reflects the cumulative 
effects of long-term consolidation, cracking, seepage evolution, and 
construction-era design practices, which are widely documented in 
literature [30], but no explicit material decay law is assumed. While 
these proxies cannot capture all site-specific response mechanics, they 
provide a practical and physically informed means of screening and 
prioritising dams for further investigation. Once high-risk dams are 
flagged, detailed geotechnical and seismic analyses (e.g., finite-element 
modelling of the dam) can follow for those dams to refine risk estimates 
[50]. To address potential overfitting, the final dataset includes only 
cases for which complete information on all predictor variables was 
available, ensuring consistency in the statistical analysis but limiting the 
useable dataset to 109 cases. Accordingly, the predictive model was 
intentionally designed around a small set of physically meaningful 
variables for which data were available in the literature, reducing the 
risk of spurious correlations and ensuring that the resulting model re
mains interpretable and robust despite the modest sample size.

5.1. Prediction model functional form

The functional form of a predictive model plays a crucial role in 
determining both the accuracy and reliability of regression analyses. 
Initially, predictive models in seismic engineering, such as ground mo
tion prediction models, considered only earthquake parameters. How
ever, subsequent studies demonstrated the importance of incorporating 
site-specific and structural parameters to account for local variability 
and the influence of different embankment characteristics. For instance 
Ref. [51], illustrated the process of selecting appropriate functional 
forms for ground motion equations in regions with sparse data, using the 
Himalayas as a case study. Similarly [52], highlighted that functional 
forms for intensity prediction differ from those for ground motion, and 
they developed an intensity predictive equation specifically for the 

Himalayan region. Given the absence of predictive models to predict 
dam damage intensity, we identify suitable functional forms to develop 
robust predictive equations for DDI. DDI predictive models were 
formulated by adapting functional forms from previously established 
Intensity Prediction Equations (IPEs) [52,53], Ground Motion Predic
tion Equations (GMPEs) [54], and a dam crest settlement model [55]. 
This resulted in four candidate predictive equations for DDI, expressed 
as follows: 

1) Model 1 (Log-Linear Form): This model was modified from the dam 
crest settlement model given by Ref. [55].

DDI=β1+β2 logM+β3 logR+β4 logHD+β5 logAD+β6 logDT1+β7 logDT2

(1) 

2) Model 2 (Nonlinear Mixed Form): This model was modified from a 
generalized GMPE form as discussed by Ref. [54].

3) Model 3 (Linear-log Mixed Form): This model was modified from an 
IPE form, as discussed by Ref. [53].

DDI = β1 + β2M + β3 log R + β4 R + β5 HD + β6AD + β7DT1 + β8DT2

(3) 

4) Model 4 (Quadratic-log Mixed Form): This model was modified from 
an IPE form, as discussed by Ref. [52].

DDI= β1 +β2M+β3M2 +β4 log R+β5 R+β6 HD +β7AD +β9DT1 +β10DT2

(4) 

in these models, βi denotes regression coefficients, M represents the 
moment magnitude (Mw), R is the hypocentral distance (Rhyp), HD is the 
dam height, AD is the age of the dam, and DDI represents the dam 
damage intensity. Rhyp is calculated as: 

Rhyp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Repi
2 + Df

2
√

(5) 

where Repi denotes the epicentral distance and Df the focal depth. All 
predictors in the four models were selected based on their physical or 
engineering relevance [52–55]. Earthquake magnitude (M, M2, Mβ4 

terms) serves as the primary driver of seismic damage, with nonlinear or 
quadratic terms enabling flexible scaling of damage severity [52–55]. 
Hypocentral distance (R, log

(
R+β6 eβ7M) terms) accounts for geometric 

spreading and attenuation of seismic waves along the source-to-dam 
path, incorporating focal depth through Rhyp [52–55]. HD reflects 
structural inertia and hydrodynamic forces that influence dam response, 
as well as stiffness is somewhat represented in HD, accounting on seismic 
energy absorption and structural resilience, with taller dams generally 
presenting higher sliding and overturning risks [45–47]. AD is used as an 
empirical proxy for cumulative, time-dependent effects such as settle
ment, cracking, and seepage changes; it does not imply a mechanistic 
deterioration rate or reduction in material strength. To capture the effect 

DDI = β1 + β2M + β3Mβ4 + β5 log
(
R + β6 eβ7M)+β8R + β9 HD + β10AD + β11DT1 + β12DT2 (2) 
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of different types of embankment dams, the categorical variable DT was 
incorporated into the regression models. Three categories were identi
fied: homogeneous dams, rockfill dams, and earth-cored dams. The 
earthen dam was designated as the baseline category, and two dummy 
variables were introduced: 

DT =

⎧
⎨

⎩

Homogeneous dam : (DT1,DT2) = (0, 0)
Rockfill dam : (DT1,DT2) = (1, 0)

Earth cored dam : (DT1,DT2) = (0, 1)

For the baseline (earthen dams), both dummy variables are zero, 
indicating that no categorical adjustment is applied in the regression 
model. These dummy variables were introduced as additive terms in the 
regression equations to quantify the influence of dam type on DDI. The 
intercept term (β1), therefore, represents the expected DDI for earthen 
dams (baseline), while the coefficients associated with DT1 and DT2 
capture the mean deviations in DDI for rockfill and earth-cored dams, 
respectively, relative to the baseline category. Although the indices of 
these coefficients differ among models due to differences in total 
parameter count, their interpretation remains consistent across all 
functional forms. Specifically, they act as constant additive offsets that 
modify the baseline prediction without altering the relationships be
tween DDI and the primary explanatory variables (M, R, HD, and AD). 
This formulation provides a physically interpretable representation of 
categorical effects, treating dam-type influences as fixed offsets that 
preserve the functional form of the base model. The approach is anal
ogous to the use of source-type constants in GMPEs [56], which capture 
systematic differences among crustal, interface, and intraslab events 
while maintaining a shared functional structure.

Two complementary modelling strategies were employed. In the 
combined analysis, all dam types were included simultaneously, 
allowing the model to capture dam-type-dependent variations related to 
magnitude, distance, height, and ageing. In the type-specific analysis, 
separate regressions were performed for each dam type independently 
(omitting DT terms). This dual strategy captures both inter-type and 
intra-type variability in dam response, ensuring robust and physically 
interpretable predictive relationships. Fig. 6 presents the correlation 
matrix of variables used in the models. The selection of the most suitable 
predictive model will be based on evaluation metrics, which are dis
cussed in subsequent sections. This functional form framework ensures 
that seismic, structural, and ageing effects are systematically captured in 
the predictive modelling of dam damage intensity.

6. Model evaluation parameters and selection criteria

DDI predictive models were systematically assessed using comple
mentary residual-based and likelihood-based metrics. Together, these 
approaches provide a comprehensive understanding of model behav
iour, including systematic bias, dispersion of predictions, error magni
tude, and information-theoretic fit.

6.1. Residual-based evaluation metrics

Residual-based metrics quantify the differences between observed 
and predicted values, providing insight into both systematic errors and 
overall prediction accuracy. The key metrics applied in this study are 
summarised in Table 3.

6.2. Likelihood-based metric and model ranking

To complement conventional residual-based performance measures 
with an information-theoretic perspective, the average sample log- 
likelihood (LLH) was employed as a likelihood-based metric for model 
evaluation and ranking. The LLH quantifies the agreement between 
model-predicted and observed data distributions, assuming that the re
siduals follow a Gaussian distribution with standard deviation (σ). It is 
mathematically expressed as: 

LLH = −
1
n
∑n

i=1
log

⎡

⎢
⎣

1̅̅̅
̅̅̅

2π
√

σ
e

(

−
(yi − ŷi)

2

2σ2

)⎤

⎥
⎦ (6) 

where yi and ŷi denote the observed and predicted values, respectively, 
and n is the total number of samples. This formulation represents the 
negative mean log-probability of observing the data given the model and 
its uncertainty structure. Lower LLH values correspond to smaller in
formation loss when the candidate model replaces the empirical distri
bution, and are therefore indicative of better model performance [63,
64]. LLH metric integrates both model fit and uncertainty, offering a 
probabilistically consistent and sample-size-independent evaluation of 
model adequacy. By framing model performance within an 
information-theoretic context, LLH provides a rigorous basis for model 
selection and ranking, particularly when comparing models of differing 
complexity or functional form. This approach aligns with established 
practices in seismological and geotechnical modelling, where 

Fig. 6. Correlation matrix for the variables (Magnitude (Mw), Hypocentral 
Distance (Rhyp), Dam Height (HD), Age of Dam (AD), Dam Type (DT), Dam 
Damage Intensity (DDI)) used in the analysis.

Table 3 
Parameters used for the evaluation of predictive models.

Evaluation Parameters Formula References

Bias Bias =
1
n
∑n

i=1

(
yi − ŷi

) [57]

Coefficient of determination
R2 = 1 −

∑(
yi − ŷi

)2

∑(
yi − ỹi

)2

[58,59]

Adjusted R2

R2
adj = 1 −

((
1 − R2)(n − 1)

n − k − 1

) [60]

Mean Square Error MSE =
1
n
∑n

i=1

(
yi − ŷi

)2 [58]

Root Mean Square Error
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑(

yi − ŷi
)2

√ [58]

Mean Absolute Error MAE =
1
n

∑n
i=1

⃒
⃒yi − ŷi

⃒
⃒ [58]

Mean Absolute Percentage Error
MAPE =

100
n

∑n
i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒

[61]

Symmetric Mean Absolute 
Percentage Error

sMAPE =

100
n

∑n
i=1

⃒
⃒yi − ŷi

⃒
⃒

( ⃒
⃒yi

⃒
⃒+ |ŷi|

)

2

[62]

Abbreviations: y: output DDI, yi: actual observed values of y, ŷi: predicted y 
values from the model, n: number of observations, ỹi: mean of y, k: number of 
independent variables.
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likelihood-based criteria are widely used to identify the most plausible 
predictive relationships among competing formulations [63]. Accord
ingly, models exhibiting the lowest LLH values are interpreted as sta
tistically superior, reflecting a higher likelihood of reproducing the 
observed data within the assumed uncertainty bounds.

6.3. Selection criteria and synthesis

Model selection proceeded in two stages. First, candidate models 
were ranked by LLH to identify those with the least information loss. 
Second, this likelihood-based ranking was cross-checked against 
residual-based metrics to verify that the LLH-optimal model also 
exhibited acceptable bias, low error magnitude, and consistent variance 
explanation. By combining these complementary perspectives, the final 
selected model was the one that minimised LLH while maintaining 
favourable residual statistics, thereby offering the strongest balance of 
explanatory power, predictive precision, and parsimony for subsequent 
analyses.

6.4. Predictive model validation

The predictive performance of the models was evaluated using 
repeated resampling-based internal validation, which is appropriate for 
small to moderate sample sizes and in situations where independent 
external test datasets are unavailable [65,66]. Two complementary ap
proaches were applied: repeated stratified k-fold cross-validation [67] 
and non-parametric bootstrap resampling [68].

For repeated stratified k-fold cross-validation (CV), the dataset (N =
109) was divided into five approximately equal folds (k = 5). Stratifi
cation was performed using a combined index of discretised DDI bins 
and dam type to preserve both the response distribution and relevant 
categorical structure across folds. The 5-fold procedure was repeated 10 
times with independent stratifications, resulting in a total of 50 out-of- 
sample evaluations. In each iteration, models were calibrated on four 
folds and evaluated on the held-out fold. Predictive performance was 
quantified using RMSE, MAE, and R2, which were computed for each 
fold and summarised as mean ± standard deviation (SD) across all 
repetitions. Cross-validated predictions for all observations were 
retained and aggregated for subsequent diagnostic analyses, including 
residual inspection, observed–predicted relationships, and calibration 
assessment [67].

To quantify uncertainty in predictive performance, non-parametric 
bootstrap resampling (B = 1000) was applied to the paired observed 
values and the corresponding cross-validated predictions. Empirical 95 
% confidence intervals for RMSE and MAE were derived from the 
resulting bootstrap distributions [68]. This procedure provides 
uncertainty-aware estimates of predictive accuracy while preserving the 
out-of-sample nature of the validation. The combined use of repeated 
cross-validation and bootstrap resampling enables a robust assessment 
of predictive accuracy, stability, and potential systematic bias under 
repeated sampling, while avoiding reliance on a single arbitrary data 
split. Although these resampling-based procedures do not replace vali
dation on a truly independent external dataset, they provide a rigorous 
and transparent internal evaluation of predictive generalisability under 
the present data-limited conditions.

7. Results and discussions

7.1. Regression results

Predictive relationships for the DDI were calibrated by regressing the 
selected seismic and dam-related variables against the observed DDI 
values. The estimated coefficients for all candidate models are reported 
in Tables 4–7, encompassing both the combined embankment-dam 
dataset and the individual dam-type subsets. The resulting R2 demon
strates the strong explanatory power of the predictor variables. The 

type-specific calibrations capture dam type-dependent behaviour, 
whereas the combined model reveals consistent patterns across the 
broader embankment dam. Scatter plots of predicted versus observed 
values (Fig. 7) further confirm that the calibrated models accurately 
reproduce the measured data, thereby demonstrating their adequacy in 
capturing the principal trends in the dataset.

Residuals were analysed to evaluate model adequacy and detect 
systematic errors. Residuals of the final selected model plotted against 
Rhyp are shown in Fig. 8. Residuals plotted against Rhyp exhibit a random 
scatter around zero with no discernible trend, suggesting homoscedas
ticity and the absence of distance-dependent bias. These results 
demonstrate the reliability of the predictive models across the observed 
DDI range.

Table 4 
Regression coefficients of the predictive models for the combined data analysis 
(all Embankment dam types).

Parameters Model1 Model2 Model3 Model4

Coefficients β1 − 10.144 1.123 − 3.017 − 37.188
​ β2 10.513 − 7.093 0.621 9.956
​ β3 − 2.177 7.161 1.037 − 0.631
​ β4 0.197 1.027 − 0.036 0.997
​ β5 0.164 0.180 − 0.006 − 0.036
​ β6 0.287 0.661 0.007 − 0.007
​ β7 0.076 0.166 − 0.028 0.008
​ β8 – − 0.027 0.342 − 0.079
​ β9 – − 0.005 – 0.219
​ β10 – 0.005 – –
​ β11 – − 0.016 – –
​ β12 – 0.183 – –
Metrics R2 0.538 0.612 0.620 0.621
​ Adjusted R2 0.505 0.563 0.589 0.586
​ RMSE 0.981 0.898 0.889 0.888

Table 5 
Regression coefficients of predictive models for the CED.

Parameters Model1 Model2 Model3 Model4

Coefficients β1 1.145 0.673 − 0.520 4.115
​ β2 4.292 − 4.635 0.560 − 0.728
​ β3 − 1.462 5.023 0.412 0.088
​ β4 − 0.299 1.013 − 0.023 0.424
​ β5 0.143 0.059 − 0.019 − 0.023
​ β6 – 0.766 0.011 − 0.019
​ β7 – 0.966 – 0.011
​ β8 – − 0.018 – –
​ β9 – − 0.017 – –
​ β10 – 0.010 – –
​ β11 – – ​ ​
Metrics R2 0.630 0.701 0.703 0.703
​ Adjusted R2 0.550 0.534 0.623 0.605
​ RMSE 0.930 0.837 0.833 0.833

Table 6 
Regression coefficients of the predictive models for the RCD.

Parameters Model1 Model2 Model3 Model4

Coefficients β1 2.420 − 11.874 − 17.637 − 1411.530
​ β2 5.748 0.556 0.524 362.169
​ β3 − 2.717 − 33100.787 5.070 − 23.437
​ β4 0.147 − 7.438 − 0.070 5.258
​ β5 0.231 3.492 0.001 − 0.073
​ β6 – 0.634 0.007 − 0.022
​ β7 – − 0.651 – 0.013
​ β8 – − 0.057 – –
​ β9 – 0.000 – –
​ β10 – 0.005 – –
​ β11 – – – –
Metrics R2 0.427 0.434 0.435 0.611
​ Adjusted R2 0.290 0.080 0.265 0.468
​ RMSE 0.957 0.952 0.951 0.789
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7.2. Model selection and performance discussion

Final model selection was guided by both LLH and residual-based 
metrics to balance predictive accuracy, parsimony, and explanatory 
power. From Table 8, we can see that across the combined dataset 
analysis, Models 3 and 4 consistently outperformed the other candi
dates, achieving the highest R2 (0.6197–0.6210) and adjusted R2 

(0.5858–0.5886) values, alongside the lowest MSE, RMSE, MAE, MAPE, 
and sMAPE, indicating superior predictive capability. LLH results 
corroborate these findings, with the lowest scores (1.3001–1.3018) 
reflecting minimal information loss. Dam type-specific analyses showed 
similar patterns: for HED, Models 3 and 4 attained R2 ≈ 0.805 with the 
lowest errors; in RFD, Model 4 achieved the highest R2 (0.6112) and 

lowest error measures; and for CED, Models 3 and 4 maintained R2 ≈

0.703 with consistently low error metrics, demonstrating robustness 
across dam types.

Predicted DDI values (Fig. 9) indicate that Models 1 and 2 produce 
conservative estimates, whereas Models 3 and 4 yield higher, more 
responsive predictions. Such sensitivity is advantageous in seismic 
damage assessment, where underestimation may compromise pre
paredness and increase risk [69], while overestimation, though poten
tially resource-intensive, generally ensures system protection [70]. 
Accordingly, Models 3 and 4 are recommended for predictive applica
tions due to their superior accuracy, robustness, and reliability across 
dam types.

7.3. Predictive model validation discussion

The out-of-sample validation results reveal consistent and systematic 
differences in predictive accuracy and stability among the four candi
date models. Across repeated stratified cross-validation and bootstrap 
uncertainty analysis, Models 3 and 4 consistently outperform Models 1 
and 2, while Model 2 exhibits unstable and non-generalizable behav
iour. The results of the repeated stratified 5-fold cross-validation (10 
repetitions) are summarised in Table 9. Model 3 achieves the lowest CV 
RMSE (0.95002 ± 0.01370) and lowest CV MAE (0.78993 ± 0.00894), 
followed by Model 4 (CV RMSE = 0.97261 ± 0.02273). Model 1 shows 
moderate predictive performance, whereas Model 2 exhibits substan
tially larger variability (CV RMSE SD = 0.38794; CV R2 = 0.042 ±
1.464), indicating weak and unstable generalisation.

These quantitative results are visually supported by the cross- 
validation scatter and residual plots (Figs. 10 and 11). In Fig. 10, 

Table 7 
Regression coefficients of the predictive models for the HED.

Parameters Model1 Model2 Model3 Model4

Coefficients β1 6.740 0.929 1.437 0.991
​ β2 12.936 0.430 4.497 0.932
​ β3 − 6.412 0.654 − 7.338 0.453
​ β4 0.069 0.340 0.007 − 7.338
​ β5 0.035 0.349 0.007 0.007
​ β6 – 1.032 − 0.001 0.007
​ β7 – 1.233 – − 0.001
​ β8 – − 0.050 – –
​ β9 – 0.003 – –
​ β10 – 0.003 – –
​ β11 – – – –
Metrics R2 0.805 0.796 0.805 0.805
​ Adjusted R2 0.783 0.745 0.779 0.774
​ RMSE 0.573 0.586 0.573 0.573

Fig. 7. Predicted DDI variation with actual DDI for the combined analysis, a) Model 1; b) Model 2; c) Model 3; d) Model 4.
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Model 3 exhibits the tightest clustering around the 1:1 reference line, 
indicating the highest predictive accuracy and minimal systematic bias. 
Model 4 follows closely with only slightly greater dispersion. Model 1 
displays visibly larger scatter and deviations at the extreme values, 
while Model 2 shows substantial dispersion and weak alignment with 
the 1:1 line, confirming poor generalisation. The residual plots in Fig. 11
further reinforce these trends: residuals of Models 3 and 4 are sym
metrically distributed around zero with no pronounced hetero
scedasticity, whereas Model 1 shows larger residual amplitudes and 
Model 2 exhibits wide residual spread, outliers, and non-random 
structure indicative of numerical instability.

Fig. 12 compares the distribution of predictive errors for all candi
date models under repeated cross-validation. Model 3 consistently 
achieves the lowest median RMSE and the narrowest interquartile range, 
indicating both superior predictive accuracy and robustness. Model 4 

performs comparably but with slightly higher medians and wider 
spreads, while Model 1 occupies an intermediate position. In contrast, 
Model 2 exhibits a markedly wider error distribution with numerous 
outliers and heavy-tailed behaviour, confirming pronounced instability 
and unreliable predictive performance.

Bootstrap resampling of cross-validated predictions (B = 1000) 
provides uncertainty-aware estimates of prediction error (Table 10). 
Model 3 exhibits the lowest RMSE and MAE together with the narrowest 
95 % confidence intervals, confirming superior robustness. Model 4 also 
shows relatively narrow intervals but remains slightly inferior to Model 
3. Model 2 displays the widest uncertainty bounds, further indicating 
limited predictive reliability.

The out-of-sample validation results are fully consistent with the 
training-based goodness-of-fit and log-likelihood (LLH) evaluation pre
sented in Table 8. Models 3 and 4 previously achieved the highest R2 

Fig. 8. Residuals plotted against hypocentral distance (Rhyp) for the four regression models: (a) Model 1; (b) Model 2; (c) Model 3; (d) Model 4.

Table 8 
Performance matrices of all four models for the combined and individual dam-type data analyses.

Dam Type Model Bias R2 Adj R2 MSE RMSE MAE MAPE sMAPE LLH

All Model1 0.000 0.538 0.505 0.962 0.981 0.835 44.748 37.745 1.399
Model2 0.001 0.612 0.563 0.806 0.898 0.773 43.526 38.344 1.311
Model3 0.000 0.620 0.589 0.791 0.889 0.750 43.142 37.415 1.302
Model4 0.000 0.621 0.586 0.788 0.888 0.748 43.099 37.249 1.300

HED Model1 0.000 0.805 0.783 0.329 0.573 0.452 29.378 26.990 0.863
Model2 0.000 0.796 0.745 0.343 0.586 0.468 31.798 29.219 0.884
Model3 0.000 0.805 0.779 0.328 0.573 0.450 29.033 26.739 0.862
Model4 0.000 0.805 0.774 0.328 0.573 0.450 29.033 26.739 0.862

RFD Model1 0.000 0.427 0.290 0.917 0.957 0.853 40.766 35.192 1.376
Model2 0.003 0.434 0.080 0.906 0.952 0.817 39.985 33.982 1.370
Model3 0.000 0.435 0.265 0.904 0.951 0.810 39.821 33.726 1.369
Model4 0.000 0.611 0.468 0.622 0.789 0.646 28.169 25.639 1.182

CED Model1 0.000 0.630 0.550 0.866 0.930 0.778 40.328 33.260 1.347
Model2 0.000 0.700 0.534 0.701 0.837 0.678 34.670 27.910 1.242
Model3 0.000 0.703 0.623 0.694 0.833 0.663 34.827 27.694 1.237
Model4 0.000 0.703 0.605 0.694 0.833 0.662 34.732 27.605 1.237
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(0.6197–0.6210) and adjusted R2 (0.5858–0.5886), together with the 
lowest MSE, RMSE, MAE, MAPE, and sMAPE, and the lowest LLH values 
(1.3001–1.3018). The agreement between in-sample and cross- 
validated out-of-sample rankings indicates that the superior perfor
mance of Models 3 and 4 is not driven by overfitting.

Based on the combined evidence from repeated cross-validation 
(Table 9), bootstrap uncertainty analysis (Table 10), residual di
agnostics, and training-based goodness-of-fit and LLH metrics (Table 8), 
Model 3 is selected as the final predictive model, with Model 4 identified 

as a secondary alternative. The unstable behaviour of Model 2 precludes 
its use for predictive applications. Overall, the consistency between 
likelihood-based in-sample metrics and resampling-based out-of-sample 
validation provides strong statistical support for the robustness and 
predictive generalisability of the selected model under data-limited 
conditions. Although these internal validation procedures do not sub
stitute for validation on a truly independent external dataset, they 
provide a rigorous and transparent internal assessment of predictive 
generalisability for the present study.

7.4. Recommended DDI predictive model equations

Based on the calibration, residual, likelihood analyses, and out-of- 
sample validation results, the final recommended predictive equations 
for DDI are presented below, along with their corresponding applica
bility ranges: 

1) For all types of Embankment dams:

Fig. 9. Variation of DDI with respect to each independent variable: a) Magnitude (Mw); b) Height of dam (HD); c) Age of dam (AD); d) Hypocentral distance (Rhyp).

Table 9 
Repeated stratified 5-fold cross-validation results (mean ± SD).

Model CV RMSE (mean ± SD) CV MAE (mean ± SD) CV R2 (mean ± SD)

Model 1 1.02310 ± 0.01288 0.87275 ± 0.01041 0.493 ± 0.012
Model 2 1.11080 ± 0.38794 0.92611 ± 0.29310 0.042 ± 1.464
Model 3 0.95002 ± 0.01370 0.78993 ± 0.00894 0.562 ± 0.012
Model 4 0.97261 ± 0.02273 0.80724 ± 0.01903 0.539 ± 0.021

DDI = − 3.017 + 0.621M + 1.037 log R − 0.036 R − 0.006HD + 0.007AD − 0.028 DT1 − 0.342DT2 (7) 

DDI = − 37.19 + 9.96 M − 0.63 M2 + 0.997 log R − 0.04R − 0.007HD + 0.008AD − 0.08DT1 − 0.22DT2 (8) 
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Fig. 10. Cross-validated observed versus mean predicted dam damage intensity (DDI) for all four models. Points represent out-of-sample predictions obtained from 
repeated stratified 5-fold cross-validation (10 repetitions), with predictions averaged across repeats. The dashed line denotes the 1:1 reference for perfect agreement.

Fig. 11. Cross-validated residuals versus cross-validated predicted dam damage intensity (DDI) for all four models. Residuals are computed as observed minus 
predicted values from repeated stratified 5-fold cross-validation (10 repetitions), with predictions averaged across repeats. The dashed horizontal line denotes 
zero residual.
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Constraints=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 ≤ M ≤ 8,M is Moment magnitude (Mw)

15 ≤ R ≤ 234,R is Hypocentral distance
(
Rhyp

)
in km

5 ≤ HD ≤ 105,HD is Height of Dam in m

1 ≤ AD ≤ 120,AD is Age of dam in years

(DT1,DT2) ∈ {(0,0), (1,0), (0,1)},

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0) : HED

(1, 0) : RFD

(0,1) : CED 

2) For the HED:

DDI = 1.437 + 4.497M − 7.338 log R + 0.007 R + 0.007 HD − 0.001AD

(9) 

Constraints=

⎧
⎪⎪⎨

⎪⎪⎩

M = 8,M is Moment magnitude (Mw)

82 ≤ R ≤ 175,R is Hypocentral distance
(
Rhyp

)
in km

6 ≤ HD ≤ 47,HD is Height of Dam in m
17 ≤ AD ≤ 55,AD is Age of dam in years 

3) For the RFD:

DDI= − 17.637+0.524M+5.070 log R − 0.069R+0.001HD +0.007AD

(11) 

Constraints=

⎧
⎪⎪⎨

⎪⎪⎩

7 ≤ M ≤ 8,M is Moment magnitude (Mw)

65 ≤ R ≤ 170,R is Hypocentral distance
(
Rhyp

)
in km

5 ≤ HD ≤ 105,HD is Height of Dam in m
1 ≤ AD ≤ 56,AD is Age of dam in years 

4) For the CED:

DDI= − 0.520+0.560M+0.412 log R − 0.023R − 0.019 HD +0.011AD

(13) 

Constraints=

⎧
⎪⎪⎨

⎪⎪⎩

6 ≤ M ≤ 8,M is Moment magnitude (Mw)

15 ≤ R ≤ 236,R is Hypocentral distance
(
Rhyp

)
in km

9 ≤ HD ≤ 95,HD is Height of Dam in m
2 ≤ AD ≤ 120,AD is Age of dam in years 

Fig. 12. Distribution of prediction errors for all candidate models based on 
repeated stratified 5-fold cross-validation (10 repetitions). Boxes represent the 
interquartile range (IQR), the central line denotes the median, whiskers indicate 
1.5 × IQR, and red crosses denote outliers.

Table 10 
Bootstrap 95 % confidence intervals for RMSE and MAE based on cross-validated 
predictions.

Model CV RMSE CV RMSE 95 % CI CV MAE CV MAE 95 % CI

Model 1 1.02310 0.89836–1.12570 0.87275 0.75247–0.97121
Model 2 1.11080 0.84205–1.07130 0.92611 0.70496–0.90471
Model 3 0.95002 0.83994–1.04770 0.78993 0.68580–0.88460
Model 4 0.97261 0.86116–1.08120 0.80724 0.69388–0.90796

DDI = 0.991 + 0.932M + 0.453M2 − 7.338 log R + 0.007R + 0.007HD − 0.001AD (10) 

DDI = − 1411.530 + 362.169M − 23.437M2 + 5.258 log R − 0.073R − 0.022HD + 0.013AD (12) 

DDI = 4.115 − 0.728 M + 0.088 M2 + 0.424 log R − 0.023 R − 0.019 HD + 0.011AD (14) 
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For operational use, it is important to note that DDI is typically re
ported in discrete intensity levels. Therefore, predicted DDI values that 
are not natural numbers should be rounded to the nearest integer [71]. 
For example, a predicted value of 1.5 would be rounded to 2. Addi
tionally, these predictive equations are valid only within the ranges of 
independent variables used for model calibration. Extrapolation beyond 
these ranges may reduce predictive accuracy. By following these 
guidelines, Eqs. (7)–(14) can be effectively used to estimate DDI across a 
variety of dam types and seismic scenarios, providing a robust tool for 
risk assessment and decision-making.

7.5. Relative contribution of predictor variables in DDI predictions

The relative importance of the predictor variables AD, HD, Rhyp, and 
Mw was analysed for the top-performing DDI models (Models 3 and 4) of 
each dam type (rockfill and earth-cored). The homogeneous earthen 
dam type was excluded from this analysis due to limited variability in 
Mw, as all data corresponded to a single earthquake magnitude. A 
sensitivity analysis was used to quantify the relative contributions of 
each predictor variable to the DDI. Each variable was varied systemat
ically across its observed range while the others were held constant at 
their mean values. The effects were normalised to percentage contri
butions following the procedure outlined in previous studies [72–74].

For rockfill dams in Model 3 (Fig. 13a), the DDI predictions were 
strongly dominated by the Rhyp, which contributed 75.54 % of the total 
influence. The remaining variables exhibited comparatively minor 
contributions, with AD at 11.64 %, Mw at 9.73 %, and HD at 3.08 %. In 
Model 4 (Fig. 13b), however, the relative contribution pattern became 
more balanced. The influence of Rhyp decreased to 41.19 %, while the 
contribution of HD increased substantially to 35.25 %, indicating that 
dam height becomes a critical factor in determining seismic response as 
model complexity improves. The contributions of Mw (11.97 %) and AD 
(11.60 %) were also comparable, suggesting a more integrated influence 
of both seismic and structural parameters. For earth-cored dams, the 
relative contributions of predictor variables were more evenly distrib
uted across both Model 3 (Fig. 14a) and Model 4 (Fig. 14b). In both 
models, Rhyp remained the most influential parameter, contributing 
approximately 52 % to DDI prediction. The HD accounted for around 21 
%, followed by AD with 17.6 %, and Mw with approximately 9 %. These 
findings reinforce that the Rhyp is the primary earthquake-related 
parameter influencing DDI, while the HD serves as the primary struc
tural parameter influencing DDI predictions most. The AD and Mw pro
vide secondary modulation, reflecting the effects of structural mass and 
input energy, respectively.

Fig. 14. Relative contribution of each predictor variable (Magnitude (Mw), Hypocentral Distance (Rhyp), Dam Height (HD), Age of Dam (AD)) to DDI predictions for 
earth core dams: (a) Model 3; (b) Model 4.

Fig. 13. Relative contribution of each predictor variable (Magnitude (Mw), Hypocentral Distance (Rhyp), Dam Height (HD), Age of Dam (AD)) to DDI predictions for 
rockfill dams: (a) Model 3; (b) Model 4.
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7.6. Application and practical significance of the DDI scale and predictive 
model

The DDI scale and its associated predictive models provide a 
screening-level, data-driven, semi-empirical framework for preliminary 
seismic damage assessment and portfolio-level risk screening of 
embankment dams. The framework is not intended to replace detailed 
numerical analyses of dam behaviour, but rather to complement them 
by supporting early-stage decision-making and prioritisation. High- 
fidelity numerical approaches, such as nonlinear dynamic finite- 
element simulations of cracking, permanent displacements, and slope 
instability, require extensive site-specific inputs, including material 
properties, foundation conditions, and frequency-dependent ground- 
motion characterisation, as well as substantial computational resources. 
As a result, such methods are impractical as first-stage tools for large 
dam inventories or regional-scale hazard assessments [75]. For example, 
following an earthquake affecting a region, the DDI framework can be 
applied to rapidly screen a portfolio of dams and prioritise those 
requiring immediate detailed assessment.

In contrast, the DDI framework employs readily available and widely 
reported parameters (moment magnitude, hypocentral distance, dam 
height, age, and dam type) to generate consistent empirical indicators of 
expected damage severity. This enables rapid, transparent, and inter
nally consistent ranking and prioritisation of embankment dams across 
regional or national portfolios, consistent with established risk-index 
approaches in dam safety practice [75]. The DDI therefore supports 
comparative assessment under conditions where detailed geotechnical 
and seismic information is unavailable or incomplete. By translating 
historical and post-earthquake qualitative observations (e.g., crack di
mensions, leakage severity, deformation indicators, and post-event 
operability) into a structured damage-intensity scale, the DDI enables 
the systematic integration of legacy case histories into modern seismic 
risk-screening workflows. This capability is not directly achievable 
through purely numerical displacement-based analyses and provides a 
means of leveraging existing observational evidence within a consistent 
assessment framework.

Accordingly, the DDI fits within a two-tier seismic risk assessment 
paradigm, in which an initial screening-level DDI-based evaluation is 
used to identify and prioritise potentially vulnerable dams, followed by 
targeted site-specific geotechnical and seismic analyses for those iden
tified as high risk (i.e., higher DDI levels). Such a workflow enhances the 
transparency, consistency, and cost-effectiveness of seismic safety 
evaluations and aligns with internationally recommended dam-safety 
protocols [49,75].

8. Summary and Conclusions

This study analysed historical cases of earthquake-induced damage 
to embankment dams, evaluated the effectiveness of the MMI scale to 
effectively classify the damage, and addressed the lack of dedicated 
seismic dam damage classification methods. The MMI scale was found to 
be limited in reliably classifying dam-specific earthquake damage, 
motivating the development of a novel seismic Dam Damage Intensity 
(DDI) scale. The DDI classifies seismic dam damage into five levels, 
defined by specific damage descriptions, dam characteristics, and post- 
earthquake usability. Scale was developed using data from approxi
mately 109 dams affected by 16 earthquakes, integrating both seismic 
and dam-specific parameters to provide a more comprehensive assess
ment of potential damage severity. Due to the lack of predictive models, 
DDI predictive models were developed using modified functional forms 
of Intensity Prediction Equations (Models 3 & 4), Ground Motion Pre
diction Equations (Model 2), and Dam Crest Settlement Models (Model 
1), incorporating both seismic and dam parameters. The contribution of 
the predictor variables in DDI prediction was also studied through 
sensitivity analysis. The key findings indicate that: 

1) There is a notable absence of dedicated methodologies or scales for 
classifying seismic damage to embankment dams. The MMI scale, in 
particular, has limitations in effectively classifying seismic dam 
damage, which has led to the creation of a novel seismic damage 
classification known as the seismic DDI scale for more accurate dam 
damage assessments.

2) Analysis of the compiled dataset indicates that reported seismic 
damage to embankment dams is associated with earthquakes of 
magnitude approximately Mw ≥ 6.0 occurring within hypocentral 
distances Rhyp ≤ 250 km. These values reflect characteristics of the 
available historical records rather than universal damage thresholds.

3) All models were evaluated using residual-based metrics and LLH to 
balance predictive accuracy, parsimony, and explanatory power. 
Intensity Predictive Equation (IPE) functional form-based models 
(Models 3 and 4) consistently outperformed the others, achieving the 
highest R2 and adjusted R2, the lowest error metrics (MSE, RMSE, 
MAE, MAPE, sMAPE), and the lowest LLH (1.300–1.302) for the 
combined dataset, indicating strong predictive capability and mini
mal information loss.

4) DDI models for earthen dams showed R2 ≈ 0.805 and LLH ≈0.862 for 
Models 3 and 4; for rockfill dams, Model 4 attained R2 = 0.611 and 
LLH ≈1.182; for earth-cored dams, Models 3 and 4 reached R2 ≈

0.703 and LLH ≈1.237. These results confirm the robustness of IPE- 
based models (Models 3 and 4) across dam types.

5) Out-of-sample validation using repeated stratified cross-validation 
and bootstrap uncertainty showed that the IPE-based models 
(Models 3 and 4) consistently exhibited the strongest predictive 
performance. Model 3 achieved the lowest cross-validated RMSE 
(0.950 ± 0.014) and MAE (0.790 ± 0.009), followed closely by 
Model 4 (CV RMSE = 0.973 ± 0.023; CV MAE = 0.807 ± 0.019). 
Bootstrap analysis confirms the robustness of both IPE-based models, 
with Model 3 exhibiting narrow 95 % confidence intervals for RMSE 
(0.840–1.048) and MAE (0.686–0.885), and Model 4 showing 
comparably constrained uncertainty ranges.

6) Sensitivity analysis showed that Rhyp is the most influential seismic 
factor controlling DDI, followed by Mw. Among dam parameters, HD 
was found to be the most influential factor, followed by AD, indi
cating its stronger role in seismic response. HD refers to the total dam 
height, not the height of the damaged section. Availability of more 
detailed dam-specific data may alter these contributions.
In conclusion, the DDI scale and predictive models offer a reliable 
tool for preliminary damage assessment for embankment dams in 
earthquake-prone regions. These results highlight the importance of 
integrating both seismic and structural characteristics for accurate 
vulnerability assessment.

9. Limitations and future research needs

This study has two main limitations: first, the relatively small sample 
size may restrict the generalisability of the findings. Expanding the 
dataset to include a broader range of dams across different regions and 
geological conditions would provide more robust insights wherever 
available. Second, while shear wave velocity (Vs) is recognised as an 
important parameter for assessing material stiffness and dynamic 
response, reliable site-specific Vs measurements were not available for 
the site and dam. For this reason, Vs was not included in the final 
models. Future research should aim to incorporate measured Vs values 
whenever available, as this could strengthen model accuracy and prac
tical applicability. A further important limitation is the absence of a 
truly independent external validation dataset. While the employed in
ternal resampling strategies provide a rigorous assessment of predictive 
stability under data-limited conditions, they cannot fully substitute for 
validation against independent post-event observations. Future research 
should therefore seek to test the proposed DDI models on externally 
sourced datasets as they become available. DDI models can include more 
detailed site-specific geotechnical and seismological parameters when 
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such data become available in future datasets. In addition, future work 
may also benefit from the use of larger datasets and advanced damage 
prediction techniques, such as machine learning.
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